Compare commits

...

2 Commits

Author SHA1 Message Date
Arne van Iterson d47822e31d Crosstalk = bad 2024-04-11 23:11:28 +02:00
Arne van Iterson abf123f902 Some consistency between reports 2024-04-11 23:04:37 +02:00
3 changed files with 106 additions and 17 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

View File

@ -13,14 +13,17 @@
\usepackage{hyperref}
\usepackage{listings}
\title{Euro Moon Rover}
\title{
Crosstalk experiment\linebreak
\large{EV6 - Hardware Implementation}
}
\author{
van Iterson, Arne\\
Student Nr: 1798423
\and
Selier, Tom\\
Student Nr: 1811402
Student Nr: 1808444
}
\makeindex
@ -29,13 +32,96 @@
\maketitle
\begin{abstract}
This document describes the
This document describes the process of, and measurements taken during the crosstalk experiment; Part of the EV6 Hardware Implementation course at the University of applied sciences Utrecht.
\end{abstract}
\noindent\makebox[\linewidth]{\rule{\linewidth}{0.4pt}}
\setlist[itemize]{itemjoin=\hspace*{\fill},itemjoin*=\hspace*{\fill}}
\begin{multicols}{2}
\section{Introduction}
Two conductors running parallel to each other can cause crosstalk, this is when the signal on one line induces a signal on the other line. This can cause signal integrity issues and can even cause the transmission hardware to malfunction.
This experiment will be performed on a pre-built contraption consisting of three wires above an metal plate connected to signal ground, two of which will be used. By putting a signal on one wire and measuring the resulting signal on the other, the difference between capacitive and inductive crosstalk can be observed, as well as the effect of different terminators on the signal and crosstalk.
\subsection{Objective}
The purpose of the experiment is to learn the difference between capacitive and inductive crosstalk and how different terminators affect the signal and crosstalk. Using the results of the experiment the mutual self-inductance and coupling capacitance of the setup should be determined.
\section{Methodology}
The lab manual does not provide a clear methodology for the experiment, requiring the students to setup a measurement plan themselves. We determined the following measurements would be required to determine the inductance and capacitance of the setup: % yes we determined this right before we did them so that counts as a plan right?
\begin{itemize}
\item Near and far side of the interfered conductor while the signal conductor is not terminated.
\item Near and far side of the interfered conductor while the signal conductor is shorted to ground.
\item Near and far side of the interfered conductor while the signal conductor is terminated characteristically.
\end{itemize}
The lab manual includes Figure \ref*{fig:setup_ee} which describes the electrical properties of the setup.
\begin{figure}[H]
\includegraphics[width=\linewidth]{./img/setup_ee.png}
\caption{Measurement setup}
\label{fig:setup_ee}
\end{figure}
Since the experiment setup includes a series 180 $\Omega$ resistor, the characteristic impedance would be the sum of the impedance of the resistor and the impedance of the function generator. This would make the characteristic impedance 230 $\Omega$. The setup did include a terminator of 230 $\Omega$, but it seemed to be somewhat sketchy, being hand made, and we were not sure if it was part of the setup at all. We decided to use both the 50 $\Omega$ and 230 $\Omega$ terminators to be sure and to see if there was any difference in the results.
\subsection{Equipment}
The following equipment will be used during the experiment:
\begin{itemize}[beginpenalty=10000] % This is to prevent the list from breaking across columns, but it doesn't do shit
\item Rigol DG 2041A Function/Arbritrary Waveform Generator
\begin{itemize}
\item Setup according to the method described in the lab manual:
\begin{itemize}
\item Sinusoidal waveform
\item Frequency 20 MHz % I'm fairly certain we had to determine this at some point but we just tried some shit till it worked wheeeeee
\item Output impedance 50 $\Omega$
\end{itemize}
\end{itemize}
\item DPO 2012 Oscilloscope
\begin{itemize}
\item Using default settings
\end{itemize}
\item Oscilloscope probe with a 10:1 attenuation ratio
\item Multiple 1 meter BNC cables with a characteristic impedance of 50 $\Omega$
\begin{itemize}
\item One for trigger output, one for the experiment itself
\end{itemize}
\item Various BNC accessories
\begin{itemize}
\item Short circuit terminator
\item 50 $\Omega$ terminator
\item 230 $\Omega$ terminator
\item T-connectors
\item Probe to BNC connector
\end{itemize}
\end{itemize}
\subsection{Setup}
All measurements will be taken using the setup in Figure \ref*{fig:setup}, switching between the near and far side of the setup where applicable.
\begin{figure}[H]
\includegraphics[width=\linewidth]{./img/setup.png}
\caption{Measurement setup}
\label{fig:setup}
\end{figure}
\section{Expected results}
The results expected for the different types of crosstalk are described in the following sections.\\
% CITATION NEEDED
\textbf{Capasive crosstalk}\\
Capacitive crosstalk is caused by the electric field of the signal conductor inducing a voltage on the interfered conductor. The crosstalk should be higher on the near side of the interfered conductor than on the far side. When the signal conductor is terminated, the voltage on the signal conductor is practically zero, making the capacitive crosstalk minimal. When the signal conductor is not terminated, the crosstalk should be at its maximum.\\ % Something smart about phase shfting here
\textbf{Inductive crosstalk}\\
Inductive crosstalk is caused by the magnetic field of the signal conductor inducing a voltage on the interfered conductor. The crosstalk should be higher on the far side of the interfered conductor than on the near side. When the signal conductor is terminated, the crosstalk should be at its maximum. When the signal conductor is not terminated, the crosstalk should be minimal.\\
When the signal conductor is terminated with a characteristic terminator, the resulting will be a combination of the capacitive and inductive crosstalk since the voltage is not shorted and there is some current flowing through the signal conductor; Causing both the electric and magnetic field to induce a voltage on the interfered conductor.
\section{Results}
\section{Conclusion}
\end{multicols}
\end{document}

View File

@ -61,7 +61,7 @@
\item Pulse 0 to 5 Volts
\item Frequency 1 kHz
\item Pulse width 12 ns, edge time 5 ns
\item Output impedance 50 Ohm
\item Output impedance 50 $\Omega$
\end{itemize}
\end{itemize}
@ -69,19 +69,31 @@
\begin{itemize}
\item Using default settings
\end{itemize}
\item Multiple 1 meter BNC cables with a characteristic impedance of 50 Ohm
\item Multiple 1 meter BNC cables with a characteristic impedance of 50 $\Omega$
\begin{itemize}
\item One for trigger output, three for the experiment itself
\end{itemize}
\item BNC cable of unknown length with a characteristic impedance of 75 Ohm
\item 50 Ohm terminator
\item Various BNC connectors
\item BNC cable of unknown length with a characteristic impedance of 75 $\Omega$
\item Various BNC accessories
\begin{itemize}
\item Short circuit terminator
\item 50 $\Omega$ terminator
\item T-connectors
\item Male to male connectors
\end{itemize}
\end{itemize}
\subsection{Measurements to be taken}
The following scenarios will be tested:
\begin{itemize}
\item Open termination
\item Short termination
\item Matched termination
\end{itemize}
For each scenario, the full dataset of the oscilloscope will be saved to CSV and analysed at a later moment using Python.
\newpage
\subsection{Setup}
All measurements will be taken using the setup in Figure \ref*{fig:setup}.
\begin{figure}[H]
@ -92,15 +104,6 @@
In initial tests, it was found that using a single BNC cable between the terminator and the function generator would produce a reflection, however it would overlap with the original signal, making it difficult to take any measurements. Therefore the setup was built using three cables instead of one in order to delay the reflection to a point where it can be measured. The cables were connected using BNC male to male connectors, making the total cable length about 3 meters.
\subsection{Measurements to be taken}
The following scenarios will be tested:
\begin{itemize}
\item Open termination
\item Short termination
\item Matched termination
\end{itemize}
For each scenario, the full dataset of the oscilloscope will be saved to CSV and analysed at a later moment using Python.
\section{Expected results}
We expect the following results for the different termination methods:
\begin{description}