EV5_Modcon/src/sim/pendulum.py

186 lines
5.7 KiB
Python

from pygame.math import Vector2
import math
import numpy as np
import random
import matplotlib.pyplot as plt
# Constants
C_GRAVITY = 9.81 # m/s^2
C_MTPRATIO = 100 # Pixels per meter
C_P_ANG_START = 1 / 1000 * math.pi
C_FALL_ANG = 52.5 / 100 * math.pi
class Pendulum:
def __init__(self, theta, length, dx, mass, color):
"""
Initialize a Pendulum object.
Parameters:
theta (float): Angle [rad].
length (float): Length of the pendulum [m].
dx (float): Horizontal displacement of the "cart" from the center [m].
mass (float): Mass of the pendulum for physics calculations [kg].
color (str): Display color.
Returns:
None
"""
self.vector = None # Vector2 object
self.index = 0
self.theta = [theta] # Angle in radians
self.a_ang = [0] # Angular acceleration
self.v_ang = [0] # Angular velocity
self.dx = dx # Horizontal displacement of "cart" from center
self.a_cart = [0] # Acceleration of cart
self.v_cart = [0] # Velocity of cart
self.s_cart = [0] # Displacement of cart [m]
# self.r_factor = 0.50 # Damping factor
self.length = length # Length of pendulum
self.mass = mass # Mass of pendulum for physics
self.color = color # Display color
self.pid = False
self.fallen = False
def update(self, dt):
self.doMath(dt)
self.vector = Vector2.from_polar(
((self.length * C_MTPRATIO), math.degrees(self.theta[self.index] + (1.5 * math.pi)))
)
if abs(self.theta[self.index]) == C_FALL_ANG:
self.fallen = True
def doMath(self, dt):
### ANGLE ###
ang_term1 = self.a_cart[self.index] * math.cos(self.theta[self.index])
ang_term2 = self.v_cart[self.index] * math.sin(self.theta[self.index])
ang_term3 = (
self.v_cart[self.index] # Previous cart velocity
* self.v_ang[self.index] # previous angle velocity
* math.sin(self.theta[self.index]) # Sin previous angle
)
ang_term4 = C_GRAVITY * math.sin(self.theta[self.index])
# Angular acceleration
self.a_ang.append(
(ang_term1 - ang_term2 + ang_term3 - ang_term4) / -(self.length)
)
# Integrate acceleration to get velocity
self.v_ang.append(
self.v_ang[self.index] # Previous velocity
+ (self.a_ang[self.index + 1] * (dt / 1000))
)
# Angular displacement
self.theta.append(
self.theta[self.index] # Previous angle
+ (self.v_ang[self.index + 1] * (dt / 1000))
)
# Limit fall of pendulum
self.theta[self.index + 1] = self.clamp(
self.theta[self.index + 1], -C_FALL_ANG, C_FALL_ANG
)
### CART ###
cart_term1 = (
self.mass # Mass
* self.length # Length
* self.a_ang[self.index + 1] # Current angle acceleration
* math.cos(self.theta[self.index + 1]) # Current angle
)
cart_term2 = (
self.mass # Mass
* self.length # Length
* self.v_ang[self.index + 1] # Current angle velocity
* math.sin(self.theta[self.index + 1]) # Current angle
)
# Cart acceleration
self.a_cart.append((-cart_term1 + cart_term2) / (2 * self.mass))
# Integrate acceleration to get velocity
self.v_cart.append(
self.v_cart[self.index] # Previous velocity
+ (self.a_cart[self.index + 1] * (dt / 1000))
)
# Cart displacement
self.s_cart.append(
self.s_cart[self.index] # Previous displacement
+ (self.v_cart[self.index + 1] * (dt / 1000))
)
self.dx = self.s_cart[self.index + 1] * C_MTPRATIO # Convert to pixels
# Update index
self.index += 1
def clamp(self, n, minn, maxn):
return max(min(maxn, n), minn)
def reset(self):
self.index = 0
self.a_ang = [0]
self.v_ang = [0]
self.dx = [0]
self.theta = [random.choice([1, -1]) * C_P_ANG_START]
self.a_cart = [0]
self.v_cart = [0]
self.s_cart = [0]
self.fallen = False
self.update(0)
def plot(self):
fig, axs = plt.subplots(2, 2)
fig.suptitle("Pendulum")
axs[0,0].plot(self.theta)
axs[0,0].set_title('Angle [rad]')
axs[0,1].plot(self.v_ang)
axs[0,1].set_title('Angular velocity [rad/s]')
axs[1,0].plot(self.a_ang)
axs[1,0].set_title('Angular acceleration [rad/s^2]')
fig, axs = plt.subplots(2, 2)
fig.suptitle("Cart")
axs[0,0].plot(self.s_cart)
axs[0,0].set_title('Position [m]')
axs[0,1].plot(self.v_ang)
axs[0,1].set_title('Speed [m/s]')
axs[1,0].plot(self.a_ang)
axs[1,0].set_title('Acceleration [m/s^2]')
plt.show()
# def update(self, dt):
# """
# Update the pendulum's state based on the elapsed time.
# Parameters:
# - dt (float): The elapsed time in milliseconds.
# Returns:
# None
# """
# a_ang = (-(C_GRAVITY * math.sin(self.theta)) / (self.length)) - (self.r_factor * self.v_ang) # Angular acceleration
# v_ang = a_ang * (dt/1000) + self.v_ang # Integrate acceleration to get velocity
# s_ang = v_ang * (dt/1000) # Angular displacement
# self.theta += s_ang # Update value
# self.vector = Vector2.from_polar(((self.length * 150), math.degrees(self.theta + math.pi/2)))
# self.a_ang = a_ang # Update value
# self.v_ang = v_ang # Update value