
Single inverted pendulum
EV5 - Modelling and Control

Arne van Iterson

February 11, 2024

Abstract

Electrical engineering students at the University of applied sciences Utrecht are assigned to simulate,
build and control an inherently unstable system during the ’Modelling and Control’ course of the third year.
This paper describes the process of doing just that for a single inverted pendulum. The pendulum itself is
built using LEGO® Mindstorms EV3. The control system is a PID-loop is implemented using Python. A
digital twin, also built in Python, is used to simulate the system.

1 Theory

The system that will be discussed in this paper is a
single inverted pendulum. Common implementations
of this system include a cart of some sort that carries
the pendulum on a pivot point over a defined path.

While the system could theoretically stand up
straight and never fall over, in practice the system is
inherently unstable and will fall over if not controlled.
The system can be controlled using a motor that moves
the cart up and down the path to compensate for the
pendulums falling movement. This method of control
only requires a sensor to measure the angle of the pen-
dulum.

Figure 1: System with (left) and without cart (right)

The system used in this case of this assignment is
slightly different; Instead of a cart that carries the pen-
dulum, the pendulum itself is equipped with a motor
and the angle is measured using a gyroscope. This dif-
ference has been visualised in figure 1. The physics of
the system are practically identical, however, it allows
for some minor simplifications which will be discussed
in section 2.

A practical example of this system is a Segway®

People Transporter (figure 2).

Figure 2: Two Segway® PT units in use

2 Model

The physics behind the system in question have been
described using the Lagrangian method. The La-
grangian method is a way of describing the dynamics
of a system using the kinetic and potential energy of
the system.

2.1 Lagrangian

Usually the model for this system is divided into two
parts: The cart and the pendulum. The cart is usually
considered to be a mass M that moves horizontally
along a track. The pendulum is usually considered
to be a mass m that is attached to the cart using a
pivot point. In this case however, since the motor is
attached to the pendulum and the pivot point is the
driving shaft of the motor itself, there is no separate
mass for the cart. This means that M is equal to m
and the formula can be simplified slightly.

1

The kinetic energy of the system is made up from
by the x movement of the system and the falling of the
pendulum. Since the system can only move in the x
direction using the motor, the kinetic energy is simply:

T1 =
1

2
mv2 =

1

2
mẋ2 (1)

Where x is the displacement of the system in the x
direction and m is the mass of the system.

The kinetic energy of the pendulum is influenced
by both the x and y movements of the pendulum and
therefore:

T2 =
1

2
m(ẋ2

p + ẏ2p)

The x and y position of the top of the pendulum can
be calculated using the length and angle, this assumes
that the pendulum is upright at 1

2π:

xp = x + l · sin(θ)

yp = −l · cos(θ)

The x and y velocity can be derived from the position:

ẋp = ẋ + l · cos(θ) · θ̇
ẏp = l · sin(θ) · θ̇

Putting this all together gives the kinetic energy of the
pendulum:

T2 =
1

2
m(ẋ2

s + ẏ2s)

T2 =
1

2
m((ẋ + ℓθ̇cos(θ))2 + (ℓθ̇sin(θ))2)

T2 =
1

2
m(ẋ2 + 2ẋℓθ̇cos(θ) + ℓ2θ̇2cos(θ)2 + ℓ2θ̇2sin(θ)2)

T2 =
1

2
m(ẋ2 + 2ẋℓθ̇cos(θ) + ℓ2θ̇2(cos(θ)2 + sin(θ)2))

Given that cos(x)2 + sin(x)2 = 1:

T2 =
1

2
m(ẋ2 + 2ẋℓθ̇cos(θ) + ℓ2θ̇2)

Combining T1 and T2 gives the total kinetic energy of
the system:

T = T1 + T2

T =
1

2
mẋ2 +

1

2
m(ẋ2 + 2ẋℓθ̇cos(θ) + ℓ2θ̇2)

T = mẋ2 +
1

2
m(2ẋℓθ̇cos(θ) + ℓ2θ̇2)

T = mẋ2 + mẋℓθ̇cos(θ) +
1

2
mℓ2θ̇2

The potential energy of the system is:

V = −mgℓcos(θ) (2)

This makes the full Lagrangian of the system:

L = T − V

L = mẋ2 + mẋℓθ̇cos(θ) +
1

2
mℓ2θ̇2 + mgℓcos(θ)

(3)

Since the falling pendulum influences the moving
pivot point (”cart”) and vice versa, the Lagrangian will
have to be solved for both the angular acceleration θ̈
of the pendulum and the horizontal acceleration of the
pivot ẍ

2.2 Horizontal acceleration

The horizontal acceleration of the pivot point can be
derived from the Lagrangian using the following for-
mula:

d

dt

(
∂L
∂ẋ

)
=

∂L
∂x

(4)

Filling in for ẋ

mẋ2 + mẋℓθ̇cos(θ)

∂L
∂ẋ

= 2mẋ + mℓθ̇cos(θ)

d

dt

(
∂L
∂ẋ

)
= 2mẍ + mℓθ̈cos(θ) −mℓθ̇sin(θ)

(5)

Filling in for x
∂L
∂x

= 0 (6)

Combining formulas 5 and 6 using formula 4 gives:

2mẍ + mℓθ̈cos(θ) −mℓθ̇sin(θ) = 0 (7)

Which gives:

2mẍ = −mℓθ̈cos(θ) + mℓθ̇sin(θ)

ẍ = −mℓθ̈cos(θ) + mℓθ̇sin(θ)

2m

(8)

2.3 Angular acceleration

d

dt

(
∂L
∂θ̇

)
=

∂L
∂θ

(9)

Filling in for θ̇

mẋℓθ̇cos(θ) +
1

2
mℓ2θ̇2

∂L
∂θ̇

= mẋℓcos(θ) + mℓ2θ̇

d

dt

(
∂L
∂θ̇

)
= mẍℓcos(θ) −mẋℓsin(θ) + mℓ2θ̈

(10)

Filling in for θ

mẋℓθ̇cos(θ) + mgℓcos(θ)

∂L
∂θ

= −mẋℓθ̇sin(θ) −mgℓsin(θ)
(11)

Combining formulas 10 and 11 using formula 9 gives:

mℓ2θ̈ = −mẍℓcos(θ) + mẋℓsin(θ) −mẋℓθ̇sin(θ) −mgℓsin(θ)

ℓθ̈ = − ẍcos(θ) + ẋsin(θ) − ẋθ̇sin(θ) − gsin(θ)

θ̈ = − ẍcos(θ) − ẋsin(θ) + ẋθ̇sin(θ) + gsin

l
(12)

2

2.4 Simulation

The formula’s in the previous sections have then been
put into a purpose built Python simulation suite called
Pendulum Simulator 4000. The source code for this
can be found in the appendix and in a Git repository,
which can be found at https://arnweb.nl/gitea/

arne/EV5_Modcon.

Figure 3: Main window of Pendulum Simulator 4000

3 Setup

To simplify hardware design, the system will be built
and run on a LEGO® Mindstorms EV3 development
kit. The programmable brick itself, hereinafter re-
ferred to as ”EV3”, runs a Linux distribution known as
ev3dev. Ev3dev allows for various programming lan-
guages to be used including Python and C. Both of
which will be further explained in section 4.

To reproduce the robot in figure 4, please refer to
the building instructions. [1].

Figure 4: Balancing robot

4 Control

In the simulation it was found that the system was best
controlled using a PD-loop, this was to be expected
since the system includes integration by it’s very na-
ture. The control loop was implemented using Python

and the ev3dev library. The source code for this can
be found in the appendix.

The choice of hardware has significantly influenced
the control system. Unfortunately, it has brought along
a lot of issues with the physical model. The gyroscope
used has a very limited resolution of 1 degree (1 deg)
for angle and 1 degree per second (1 deg/sec) for angu-
lar velocity. Add the fact that the sensor drifts about
0,5 deg/sec and the system becomes very unstable very
quickly.

This issue would probably have been overcome if
the system was easier to program, in its current state
the EV3 runs a limited version of Python that takes
about two minutes to load every time the program is
run. Adding any reasonable logging, through the file
system or through dumping python arrays, makes the
timing too slow to keep the control loop running fast
enough causing the robot to lose balance fairly quickly.

There has been some success in using the C pro-
gramming language and a compiling toolchain has been
set-up, however, the control of simple features like the
motor is very low level. The plan was to first get it
working in Python and then port it to C but time has
unfortunately run out.

In order to get the system to balance at all, the con-
trol loop had to be altered to include the position and
speed of the motors as has been done in the HTWay
project by D. Lechner [2]. The theory behind this is
that if the system is still falling in a certain direction
while the motors are already moving to compensate
that, the movement speed should be increased. In a
way the system now uses a cascaded control loop to
balance.

A small set of data points has been collected by
pre-assigning memory to a numpy array and writing
to it directly, then dumping this to non-volatile mem-
ory. This gives some insight into the issues with the
system, however, this also limits the run time of the
system.

5 Validation

The behaviour of the system is as follows:

Figure 5: Run 1

The fact that the system oscillates is a typical sign

3

https://arnweb.nl/gitea/arne/EV5_Modcon
https://arnweb.nl/gitea/arne/EV5_Modcon

of an ill-tuned control loop. The PID values have been
tuned to the best of my ability but the system is still
very unstable. Tuning the system has proven difficult
due to the inclusion of the motor speed and position in
the control loop.

The system is able to say upright using the HTWay
project by D. Lechner [2]. Some of the control logic has
been used in this project, however the HTWay project
includes some filtering logic for the gyro sensor that I
did not yet understood well enough to implement.

The fact that I was unable to get the system to balance
properly should not change the fact that the simulation
should behave the same given the same characteristics
and control constants as the physical model, which is
not the case.

Running the simulation tuned exactly the same as
the physical model reveals an interesting issue; The
simulated system is impossible to topple over, which is
clearly not the case with the physical model.

The simulation and the model differ in a few ways:

• The simulation does not include sensor drift or
resolution

• The simulation does not include the physical lim-
itations of the motor

• The simulation loop runs significantly faster than
the physical model does

Drawing any comparisons between the two will be
largely useless at this point, so instead we will limit the
simulation to check if the simulation will then mimic
the actual behaviour.

5.1 Limiting the simulated system

First, the resolution of the gyroscope will be limited to
1 degree. Converting this to radians gives a resolution
of 0.0175 rad. The result can be seen in figure 6. Note
that the graph has been cropped, showing only a stable
part of the simulation.

Figure 6: Simulation run with angle resolution limit

The limited resolution does cause the system to
oscillate slightly, but not escalating as expected. Ad-
ditionally, the system is still impossible to topple over.

Next, the simulation will be limited in update speed.
This means that the physics simulation will continue
while the control loop can only update every certain
interval. The log file from the physical model reveals
that the average update time for the control loop is
about 21 ms or 47 frames per second (fps).

Currently, the simulation runs at 60 fps, the up-
date call for the pendulum control is called every frame.
The pendulum control has been changed to only actu-
ally control the system after the dt value is more or
equal to 21 ms. Because the program runs at 60 fps or
roughly 16 ms per frame, the actual PID loop will be
called every 32 ms; This is longer than required, but
should demonstrate the effect of the delay. The result
can be seen in figure 7.

Figure 7: Simulation run with PID control delay

Interestingly, the limited update frequency of the
PID controller seems to act as a low-pass filter, reduc-
ing the oscillations in the system. The user is now able
to topple the system over.

Next, the simulation will be limited in the speed at
which it can change the horizontal position of the pen-
dulum. The motor speed on the EV3 is measured in
an arbitrary value between -1050 and 1050. The max
speed of the motor is about 175 rpm as stated in the
research by P. Hurbain. [3]. Combined with the 44
mm diameter of the used wheels gives the maximum
speed of the robot as:

rwheel = 22[mm]

scircumference = 2πrwheel = 138.23mm = 0.1382m

vmax = (175/60) · 0.1382

= 2.92 · 0.1382 = 0.403m/s

(13)

The simulation has been changed to never exceed
the speed limit of 0.403 m/s even if the controller asks
for it, just like the EV3 motors would do. Limiting
the simulation to 0.403 m/s did little to change its be-
haviour. As can be seen in figure 8, the system never
reaches this speed in the first place.

4

Figure 8: Simulation run with speed limit

Interesting, however, is the acceleration as can be
seen in figure 9.

Figure 9: Simulation run with speed limit

The initial kick in acceleration is the attempt to
topple the system over by the user. The response is
quite harsh, reaching up to 7 m/s2 which is only slightly
impossible for the physical system to achieve. Unfor-
tunately, this is also quite difficult to limit, since the
acceleration of the motor would require a measuring
setup to determine.

If we make a generous assumption that the motor
can reach it’s top speed within 0.15 seconds, the accel-
eration would be:

vmax = 0.403m/s

tmax = 0.1s

amax =
vmax

tmax
=

0.403

0.15
= 2.69m/s

2

(14)

This does cause the system to fall over in the simu-
lation as expected, though not as quickly as the phys-
ical model and with less oscillations.

Figure 10: Simulation run with all limits in place

Lastly, the sensor will be offset with about 0,5 de-
grees per second which will be updated every time the
control loop is run. The results can be seen in figure
11.

Figure 11: Simulation run with sensor drift

With that, we have successfully created a digital
twin for a poorly tuned system. The system is now no
longer able to balance properly, it oscillates and falls
over just like the physical model.

6 Conclusion

Due to issues with the physical model, this entire
project has run slightly backwards. Having to alter
the control loop significantly nearing the end of the
project has caused the physical model to behave differ-
ently than the simulation to a point where comparing
them was not really possible. The simulation has been
altered to include the limitations of the physical model
as closely as possible, which has been successful and
the resulting behaviour is comparable to the physical
model. So while the system does not balance, at least
it makes sense.

7 Recommendations

1. Do not make a robot using LEGO.

5

8 Ethics of Artificial Intelligence

In Utilitarian ethics the greatest good for the greatest number is the most important. Whatever happens along
the way does not matter as long as the outcome is good for the most people or society as a whole. The last
couple of years have seen great development in the field of Artificial Intelligence, which brings along the question
of how and if this technology should be used from a utilitarian perspective.

The answer to this question is not as simple as it may seem. On the one hand, AI can be used to auto-
mate tasks that are dangerous or tedious for humans. This would allow them to focus on more important
tasks and would reduce the amount of work related injuries; Which would be favourable according to utilitarian
ethics. This also means however, that it would replace work that is currently done by humans, therefore leading
to a loss of jobs and, potentially, a group of people that are unable to find work.

Then again, we are currently experiencing the development of AI, which means that what is happening now
might just be part of the AI development that will eventually lead to the greatest thing humans have ever done
that will eventually benefit everyone. In that case, we might just have to accept the loss of jobs and the other
negative effects of AI development as a necessary evil until the great-for-everyone endpoint is reached.

This great-for-everyone endpoint however, is not a certainty and if it is ever reached, it might take a very
long time. Therefore, I am of the opinion that not all types of AI should be treated with the same ethical
standards.

In the context of modelling and control, I think most of the work described in this paper, maybe with the
exception of building the physical model itself, will no longer be done by a person in the near future. Writing
this paper and parts of the software in VSCode with Github Copilot Enabled has taught me that with a more
limited context compared to generic AI, like ChatGPT, the AI ’understood’ more complex code structures and
physics than I expected. At the moment, I don’t think it would be a great idea to run Copilot code without
any checking by a human, but I do think that it will be possible in the near future.

There is a lot more to engineering than just coding, therefore I don’t think engineers as a whole will be
replaced at all. AI development towards the aid of developers will likely not directly cost any jobs. There have
been cases where it has or likely will, especially creative jobs, journalism and administrative jobs. [4] This type
of development, I believe, should not stop but should be kept in check. We have seen the writers strikes and the
companies firing their entire support staff after OpenAI opened the GPT-3 API. [5] While it might be part of
the upcoming great-for-everyone endpoint, right now I do not believe we should allow AI to completely replace
jobs with half-baked solutions for the sake of profit.

6

References

[1] A. van Iterson, “Building instructions.” [Online]. Available: https://arnweb.nl/gitea/arne/EV5 Modcon/
releases/download/pre-alpha/Instruction.pdf

[2] D. Lechner, “Python port of the hitechnic htway for ev3dev,” Github, 2010. [Online]. Available:
https://gist.github.com/dlech/11098915

[3] P. Hurbain, “Lego® 9v technic motors compared characteristics,” 2012. [Online]. Available:
https://www.philohome.com/motors/motorcomp.htm

[4] L. A. Times, “Writers’ strike: What happened, how it ended and its impact on holly-
wood.” [Online]. Available: https://www.latimes.com/entertainment-arts/business/story/2023-05-01/
writers-strike-what-to-know-wga-guild-hollywood-productions

[5] W. Post, “Chatgpt provided better customer service than his staff. he fired them.” [Online]. Available:
https://www.washingtonpost.com/technology/2023/10/03/ai-customer-service-jobs/

7

https://arnweb.nl/gitea/arne/EV5_Modcon/releases/download/pre-alpha/Instruction.pdf
https://arnweb.nl/gitea/arne/EV5_Modcon/releases/download/pre-alpha/Instruction.pdf
https://gist.github.com/dlech/11098915
https://www.philohome.com/motors/motorcomp.htm
https://www.latimes.com/entertainment-arts/business/story/2023-05-01/writers-strike-what-to-know-wga-guild-hollywood-productions
https://www.latimes.com/entertainment-arts/business/story/2023-05-01/writers-strike-what-to-know-wga-guild-hollywood-productions
https://www.washingtonpost.com/technology/2023/10/03/ai-customer-service-jobs/

A Simulation source code

A.1 sim.py

Pendulum s imu la tor 4000
Arne van I terson , 2023

Imports
import pygame widgets
import pygame
from pygame widgets . s l i d e r import S l i d e r
from pygame . math import Vector2
import math

pygame se tup
pygame . i n i t ()
s c r e en = pygame . d i s p l a y . set mode ((1280 , 720))
c l o ck = pygame . time . Clock ()
running = True
update = True
po le = Vector2 (s c r e en . g e t r e c t () . c en t e r) # center o f screen

Own o b j e c t s must be imported a f t e r pygame i n i t
from pendulum import Pendulum
from u iHe lpe r s import ∗

UI he l p e r s
ui = SimUI (screen , po l e)

Pendulum se tup
Sta r t ang l e in radians , l eng th , mass , c o l o r
pendulum = Pendulum (0 , 0 . 2 , 0 , 0 . 7 , ” red ”)
pendulum . r e s e t ()
dx = 0 # x o f f s e t
dt = 1 # de l t a time

S l i d e r s
s l i d e r k p = S l i d e r (screen , 910 , 590 , 320 , 16 , i n i t i a l=pendulum . kp , min=0, max=2, s tep =0.001)
s l i d e r k i = S l i d e r (screen , 910 , 620 , 320 , 16 , i n i t i a l=pendulum . ki , min=0, max=0.5 , s tep =0.001)
s l i d e r k d = S l i d e r (screen , 910 , 650 , 320 , 16 , i n i t i a l=pendulum . kd , min=0, max=0.5 , s tep =0.001)

Gametime
r t = 10 # run time
h ighsco r e = 0

Metadata va l u e s
def meta () :

u i . meta (pendulum . theta [pendulum . index] , ”Theta”)
u i . meta (pendulum . a ang [pendulum . index] , ”Angular a c c e l e r a t i o n ”)
u i . meta (pendulum . dx , ”dx”)
u i . meta (pendulum . a c a r t [pendulum . index] , ”Cart a c c e l e r a t i o n ”)

u i . meta (pendulum . pid , ” Control ”)

u i . meta (pendulum . kd , ”Kd”)
u i . meta (pendulum . ki , ”Ki”)
u i . meta (pendulum . kp , ”Kp”)

u i . meta (dt , ”dt”)

8

ui . meta (not update , ”Paused”)
u i . meta (r t / 1000 , ”Run time [s] ”)
u i . meta (h i ghs co r e / 1000 , ” Highscore [s] ”)

while running :
events = pygame . event . get ()
User c on t r o l s
for event in events :

Quit
i f event . type == pygame .QUIT:

running = False
e l i f event . type == pygame .KEYDOWN:

Quit
i f event . key == pygame .K ESCAPE:

running = False
Reset s imu la t i on
e l i f event . key == pygame .K SPACE:

pendulum . r e s e t ()
r t = 0

Pause s imu la t i on
e l i f event . key == pygame . K p :

update = not update
Disp lay p l o t i f s imu la t i on i s not running
e l i f event . key == pygame . K g :

i f pendulum . f a l l e n :
pendulum . p l o t ()

else :
update = False
pendulum . p l o t ()

Toggle PID c o n t r o l l e r
e l i f event . key == pygame . K c :

pendulum . pid = not pendulum . pid

Move pendulum
keys = pygame . key . g e t p r e s s e d ()
i f keys [pygame .K LEFT] or keys [pygame . K a] :

pendulum . a c a r t [pendulum . index] −= 4
i f keys [pygame .K RIGHT] or keys [pygame . K d] :

pendulum . a c a r t [pendulum . index] += 4

Draw gr i d
ui . g r i d (50 , 0 , 15)

Update PID va l ue s
pendulum . kp = s l i d e r k p . getValue ()
pendulum . k i = s l i d e r k i . ge tValue ()
pendulum . kd = s l i d e r k d . getValue ()

Update pendulum
i f not pendulum . f a l l e n :

i f update :
r t += dt
pendulum . update (dt)

else :
u i . gameover (r t)

Update h i gh s core
i f r t > h ighsco r e :

h i ghs co r e = r t

9

Draw metadata
ui . update (dt)
meta ()

Draw pendulum
dx = (pendulum . dx , 0)
pygame . draw . l i n e (screen , pendulum . co lo r , po l e + dx , po l e + pendulum . vec to r + dx , 3)
pygame . draw . c i r c l e (screen , ” black ” , po l e + dx , 15 , 3)

Draw frame
pygame widgets . update (events)
pygame . d i s p l a y . f l i p ()
dt = c lo ck . t i c k (60) # l im i t s FPS to 120

pygame . qu i t ()

A.2 pendulum.py

from pygame . math import Vector2
import math
import numpy as np
import random
import matp lo t l i b . pyplot as p l t

Constants
C GRAVITY = 9.81 # m/sˆ2
C MTPRATIO = 100 # Pix e l s per meter
C P ANG START = 1 / 1000 ∗ math . p i
C FALL ANG = 52.5 / 100 ∗ math . p i

C ANG RES LIMIT = ((2 ∗ math . p i) / 360) # rad
C V CART LIMIT = 0.403 # m/s
C A CART LIMIT = C V CART LIMIT / 0 .1 # m/sˆ2

class Pendulum :
def i n i t (s e l f , theta , length , dx , mass , c o l o r) :

”””
I n i t i a l i z e a Pendulum ob j e c t .

Parameters :
t h e t a (f l o a t) : Angle [rad] .
l e n g t h (f l o a t) : Length o f the pendulum [m] .
dx (f l o a t) : Hor i zon ta l d i sp lacement o f the ” car t ” from the cen ter [m] .
mass (f l o a t) : Mass o f the pendulum fo r phy s i c s c a l c u l a t i o n s [kg] .
c o l o r (s t r) : Disp lay co l o r .

Returns :
None
”””
Game v a r i a b l e s
s e l f . v ec to r = None # Vector2 o b j e c t
s e l f . f a l l e n = False # Stop when pendulum f a l l s over

Physics v a r i a b l e s
s e l f . index = 0 # Index he l p e r f o r p l o t t i n g graphs
s e l f . theta = [theta] # Angle in rad ians
s e l f . a ang = [0] # Angular a c c e l e r a t i o n
s e l f . v ang = [0] # Angular v e l o c i t y

Gyro o f f s e t

10

s e l f . t h e t a o f f s e t = 0

s e l f . dx = dx # Hor i zon ta l d i sp lacement o f ” car t ” from center
s e l f . a c a r t = [0] # Acce l e ra t i on o f ca r t
s e l f . v c a r t = [0] # Ve loc i t y o f ca r t
s e l f . s c a r t = [0] # Displacement o f ca r t [m]

s e l f . r f a c t o r = 0.50 # Damping f a c t o r

s e l f . l ength = length # Length o f pendulum
s e l f . mass = mass # Mass o f pendulum fo r phy s i c s
s e l f . c o l o r = c o l o r # Disp lay co l o r

PID v a r i a b l e s
s e l f . pid = True
s e l f . pidDelay = 0
s e l f . kp = 1.3
s e l f . k i = 0.0
s e l f . kd = 0.1
s e l f . kp = 7 .5
s e l f . k i = 0 .0
s e l f . kd = 1.15

s e l f . kp m = 0.07
s e l f . kd m = 0.1

def update (s e l f , dt) :
s e l f . doMath(dt)
s e l f . v ec to r = Vector2 . f rom po lar (

((s e l f . l ength ∗ C MTPRATIO) , math . degree s (s e l f . theta [s e l f . index] − (0 . 5 ∗ math . p i)))
)

i f s e l f . pid :
s e l f . pidDelay += dt

i f s e l f . pidDelay > 21 :
s e l f . p idContro l (s e l f . pidDelay)
s e l f . t h e t a o f f s e t += s e l f . pidDelay ∗ (C ANG RES LIMIT / 1000) ## One degree a second
s e l f . pidDelay = 0

i f abs (s e l f . theta [s e l f . index]) == C FALL ANG:
s e l f . f a l l e n = True

de f update (s e l f , d t) :
”””
Update the pendulum ’ s s t a t e based on the e l ap sed time .

Parameters :
− dt (f l o a t) : The e l ap s ed time in m i l l i s e c ond s .

Returns :
None
”””
a ang = (−(C GRAVITY ∗ math . s in (s e l f . t h e t a)) / (s e l f . l e n g t h)) − (s e l f . r f a c t o r ∗ s e l f . v ang)

Angular a c c e l e r a t i o n

v ang = a ang ∗ (d t /1000) + s e l f . v ang # In t e g r a t e a c c e l e r a t i o n to ge t v e l o c i t y
s ang = v ang ∗ (d t /1000) # Angular d i sp lacement

s e l f . t h e t a += s ang # Update va lue

11

s e l f . v e c t o r = Vector2 . f rom po lar (((s e l f . l e n g t h ∗ 150) , math . degrees (s e l f . t h e t a + math . p i /2)))

s e l f . a ang = a ang # Update va lue
s e l f . v ang = v ang # Update va lue

def doMath(s e l f , dt) :
ANGLE
ang term1 = s e l f . a c a r t [s e l f . index] ∗ math . cos (s e l f . theta [s e l f . index] + s e l f . t h e t a o f f s e t)
ang term2 = s e l f . v c a r t [s e l f . index] ∗ math . s i n (s e l f . theta [s e l f . index] + s e l f . t h e t a o f f s e t)
ang term3 = (

s e l f . v c a r t [s e l f . index] # Previous car t v e l o c i t y
∗ s e l f . v ang [s e l f . index] # prev ious ang l e v e l o c i t y
∗ math . s i n (s e l f . theta [s e l f . index] + s e l f . t h e t a o f f s e t) # Sin prev ious ang l e

)
ang term4 = C GRAVITY ∗ math . s i n (s e l f . theta [s e l f . index] + s e l f . t h e t a o f f s e t)

Angular a c c e l e r a t i o n
s e l f . a ang . append (

(ang term1 − ang term2 + ang term3 − ang term4) / −(s e l f . l ength)
)

In t e g r a t e a c c e l e r a t i o n to ge t v e l o c i t y
s e l f . v ang . append (

s e l f . v ang [s e l f . index] # Previous v e l o c i t y
+ (s e l f . a ang [s e l f . index + 1] ∗ (dt / 1000))

)

Angular d i sp lacement
t h e t a r e s = s e l f . theta [s e l f . index] + (s e l f . v ang [s e l f . index + 1] ∗ (dt / 1000))
theta round = t h e t a r e s % C ANG RES LIMIT
i f theta round > 0 .5 ∗ C ANG RES LIMIT :

t h e t a r e s = t h e t a r e s + theta round
else :

t h e t a r e s = t h e t a r e s − theta round
s e l f . theta . append (t h e t a r e s)

Limit f a l l o f pendulum
s e l f . theta [s e l f . index + 1] = s e l f . clamp (

s e l f . theta [s e l f . index + 1] , −C FALL ANG, C FALL ANG
)

CART
cart te rm1 = (

s e l f . mass # Mass
∗ s e l f . l ength # Length
∗ s e l f . a ang [s e l f . index + 1] # Current ang l e a c c e l e r a t i o n
∗ math . cos (s e l f . theta [s e l f . index + 1]) # Current ang l e

)
car t te rm2 = (

s e l f . mass # Mass
∗ s e l f . l ength # Length
∗ s e l f . v ang [s e l f . index + 1] # Current ang l e v e l o c i t y
∗ math . s i n (s e l f . theta [s e l f . index + 1]) # Current ang l e

)

Cart a c c e l e r a t i o n
a r e s = (−cart te rm1 + cart te rm2) / (2 ∗ s e l f . mass)
s e l f . a c a r t . append (s e l f . clamp (a re s , −C A CART LIMIT , C A CART LIMIT))
i f abs (a r e s) < C A CART LIMIT :
s e l f . a ca r t . append (a r e s)
e l s e :

12

s e l f . a ca r t . append (C A CART LIMIT ∗ (a r e s / abs (a r e s)))

In t e g r a t e a c c e l e r a t i o n to ge t v e l o c i t y
v r e s = s e l f . v c a r t [s e l f . index] + (s e l f . a c a r t [s e l f . index + 1] ∗ (dt / 1000)) # Previous v e l o c i t y

i f abs (v r e s) < C V CART LIMIT :
s e l f . v c a r t . append (v r e s)

else :
s e l f . v c a r t . append (C V CART LIMIT ∗ (v r e s / abs (v r e s)))

Cart d i sp lacement
s e l f . s c a r t . append (

s e l f . s c a r t [s e l f . index] # Previous d i sp lacement
+ (s e l f . v c a r t [s e l f . index + 1] ∗ (dt / 1000))

)
s e l f . dx = s e l f . s c a r t [s e l f . index + 1] ∗ C MTPRATIO # Convert to p i x e l s

Update index
s e l f . index += 1

def clamp (s e l f , n , minn , maxn) :
return max(min(maxn , n) , minn)

def r e s e t (s e l f) :
s e l f . index = 0

s e l f . a ang = [0]
s e l f . v ang = [0]
s e l f . dx = [0]
s e l f . theta = [random . cho i c e ([1 , −1]) ∗ C P ANG START]

s e l f . a c a r t = [0]
s e l f . v c a r t = [0]
s e l f . s c a r t = [0]
s e l f . t h e t a o f f s e t = 0
s e l f . f a l l e n = False
s e l f . update (0)

def p lo t (s e l f) :
f i g , axs = p l t . subp lo t s (2 , 2)
f i g . s u p t i t l e (”Pendulum”)

axs [0 , 0] . p l o t (s e l f . theta)
axs [0 , 0] . s e t t i t l e (’ Angle [rad] ’)
axs [0 , 1] . p l o t (s e l f . v ang)
axs [0 , 1] . s e t t i t l e (’ Angular v e l o c i t y [rad/ s] ’)
axs [1 , 0] . p l o t (s e l f . a ang)
axs [1 , 0] . s e t t i t l e (’ Angular a c c e l e r a t i o n [rad/ s ˆ2] ’)

f i g , axs = p l t . subp lo t s (2 , 2)
f i g . s u p t i t l e (”Cart”)

axs [0 , 0] . p l o t (s e l f . s c a r t)
axs [0 , 0] . s e t t i t l e (’ Po s i t i on [m] ’)
axs [0 , 1] . p l o t (s e l f . v c a r t)
axs [0 , 1] . s e t t i t l e (’ Speed [m/ s] ’)
axs [1 , 0] . p l o t (s e l f . a c a r t)
axs [1 , 0] . s e t t i t l e (’ Acc e l e r a t i on [m/ s ˆ2] ’)

p l t . show ()

13

def pidContro l (s e l f , dt) :
e r r o r = s e l f . theta [s e l f . index]
dt = (dt /1000)
r e s u l t = (s e l f . kp ∗ error) + (s e l f . k i ∗ sum(s e l f . t h e t a)) + (s e l f . kd ∗ s e l f . v ang [s e l f . index]) #PID
r e s u l t = (s e l f . kp ∗ e r r o r) \

+ (((e r r o r − s e l f . theta [s e l f . index − 1]) / (dt + 1 / 1000)) \
∗ s e l f . kd) \
+ (s e l f . kp m ∗ s e l f . s c a r t [s e l f . index]) \
+ (s e l f . kd m ∗ s e l f . v c a r t [s e l f . index])

s e l f . a c a r t [s e l f . index] = s e l f . clamp (r e s u l t ∗ 10 , −C A CART LIMIT , C A CART LIMIT)

A.3 uiHelpers.py

import pygame

Constants
C GRID L VALUE = 200
C GRID D VALUE = 100
C MPLOT START = 700
C BLINK TIME = 500

gr idL ight = pygame . Color (C GRID L VALUE, C GRID L VALUE, C GRID L VALUE)
gridDark = pygame . Color (C GRID D VALUE, C GRID D VALUE, C GRID D VALUE)
font h = pygame . f ont . SysFont (None , 28)
font m = pygame . f ont . SysFont (None , 16)

UI Class
class SimUI :

def i n i t (s e l f , screen , po l e) :
s e l f . s c r e en = sc r een
s e l f . po l e = po le

s e l f . metaPlotY = C MPLOT START

s e l f . b l i nk = False
s e l f . bl inkTimer = 0

s e l f . c o n t r o l l e d = True
s e l f . paused = False

def meta (s e l f , val , desc) :
Capture va l u e s to d i s p l a y s t a t u s
i f desc == ” Control ” :

s e l f . c o n t r o l l e d = va l
i f desc == ”Paused” :

s e l f . paused = va l

Print em
s e l f . s c r e en . b l i t (

font m . render (f ”{desc } = { va l }” , True , ” black ”) , (10 , s e l f . metaPlotY)
)
s e l f . metaPlotY −= 15

def g r id (s e l f , d i s t , Xof f =0, Yoff =0):
Clear the screen
s e l f . s c r e en . f i l l (” white ”)

Drawing o f f s e t s so the g r i d a l i g n s wi th the po l e
cXof f = s e l f . po l e . x % d i s t
cYof f = s e l f . po l e . y % d i s t

14

Draw the g r i d
for i in range (0 , 1280 , d i s t) :

pygame . draw . l i n e (
s e l f . screen ,
gr idLight ,
(i + Xoff + cXoff , 0) ,
(i + Xoff + cXoff , 720) ,
1 ,

)
pygame . draw . l i n e (

s e l f . screen ,
gr idLight ,
(0 , i + Yoff + cYof f) ,
(1280 , i + Yoff + cYof f) ,
1 ,

)

Draw the cen te r l i n e s darker
pygame . draw . l i n e (

s e l f . screen , gridDark , (s e l f . po l e . x + Xoff , 0) , (s e l f . po l e . x + Xoff , 720) , 1
)
pygame . draw . l i n e (

s e l f . screen ,
gridDark ,
(0 , s e l f . po l e . y + Yoff) ,
(1280 , s e l f . po l e . y + Yoff) ,
1 ,

)

def centeredText (s e l f , font , t ex t=”” , co l our=” black ” , y=0):
textObj = font . render (text , True , co l ou r)
t e x t r e c t = textObj . g e t r e c t (c en t e r =(1280 / 2 , 720 / 2 − y))
s e l f . s c r e en . b l i t (textObj , t e x t r e c t)

def gameover (s e l f , time) :
f o n t g = pygame . f ont . Font (” r e s \\pricedown . o t f ” , 128)
s e l f . centeredText (font g , ”wasted” , ” red ” , 150)
s e l f . centeredText (font m , f ”You c o n t r o l l e d the pendulum f o r { time / 1000} seconds ” , ” black ” , 80)

s e l f . centeredText (font m , ” Press space to r e s t a r t ” , ” b lack ” , 60)
s e l f . centeredText (font m , ” Press G to view nerd graphs ” , ” black ” , 45)

def update (s e l f , dt) :
Cred i t s
s e l f . s c r e en . b l i t (

f on t h . render (”Pendulum s imu la tor 4000” , True , ” black ”) , (10 , 10)
)
s e l f . s c r e en . b l i t (

font m . render (”Arne van I t e r son , 2023” , True , ” black ”) , (1150 , 700)
)

Reset meta p r i n t i n g
s e l f . metaPlotY = C MPLOT START

Draw current s t a t u s b l i n k i n g
i f s e l f . b l i nk :

i f s e l f . paused :
t ex t = ”Paused”

e l i f s e l f . c o n t r o l l e d :
t ex t = ”Auto mode”

15

else :
t ex t = ”Manual mode”

textObj = font h . render (text , True , ” black ”)
t e x t r e c t = textObj . g e t r e c t (r i g h t =1270 , top=10)
s e l f . s c r e en . b l i t (textObj , t e x t r e c t)

i f s e l f . bl inkTimer > C BLINK TIME :
s e l f . b l i nk = not s e l f . b l i nk
s e l f . bl inkTimer = 0

s e l f . bl inkTimer += dt

16

B Control source code

#!/ usr / b in /env python3

h t t p s :// g i t hu b . com/ev3dev /ev3dev−lang−python
h t t p s :// g i t hu b . com/ev3dev /ev3dev−lang−python−demo#ba lanc3r

from ev3dev2 . motor import LargeMotor , OUTPUT B, OUTPUT C
from ev3dev2 . s enso r import INPUT 2
from ev3dev2 . s enso r . l e go import GyroSensor
from ev3dev2 . sound import Sound

import time
import l o g g i n g
import os
import csv

from datet ime import datet ime

now = datet ime . now () # current date and time
LOGNAME = os . path . j o i n (os . getcwd () , ” l o g s /” , (now . s t r f t im e (”%m−%d %H:%M:%S”) + ” f i n a l . csv ”))
pr in t (LOGNAME)
lo g g i n g . ba s i cCon f i g (f i l ename=LOGNAME,
f i l emode=’a ’ ,
format=’%(message) s ’ ,
l e v e l=l o g g i n g .DEBUG)

l o g t = []
l og ang = []
log vang = []
l o g x = []
l o g v = []

Motors
l motor = LargeMotor (OUTPUT B)
r motor = LargeMotor (OUTPUT C)

Sensors
gyro = GyroSensor (INPUT 2)

Sound
sound = Sound ()

t i r e s are 56mm diameter
def balance (t a r g e t a n g l e =0):

t = time . time ()

PID
gyro k p = 7 .5
f l o a t k i = 0 # No i n t e g r a l in t h i s system
gyro k d = 1.15
motor k p = 0.07
motor k d = 0 .1

Ca l i b r a t e gyro in curren t p o s i t i o n
gyro . c a l i b r a t e ()
gyro . mode = GyroSensor .MODE GYRO G A
angle = gyro . ang le

Ca l i b r a t e motor

17

prev sum motor pos = 0
l motor . r e s e t ()
r motor . r e s e t ()
pos = 0

sound . speak (’ 3 , 2 , 1 ’)

Stop i f the robo t has f a l l e n over
while abs (ang le) < 40 :

Keep time
dt = time . time () − t
t = time . time ()

sum motor pos = l motor . p o s i t i o n + r motor . p o s i t i o n

de l ta motor pos = sum motor pos − prev sum motor pos
pos += de l ta motor pos
speed = (de l ta motor pos / dt)

prev sum motor pos = sum motor pos

angle , r a t e = gyro . ang l e and ra t e

l o g t . append (t)
log ang . append (ang le)
log vang . append (ra t e)
l o g x . append (pos)
l o g v . append (speed)

e r r o r = ang le − t a r g e t a n g l e
pd = gyro k p ∗ e r r o r + gyro k d ∗ r a t e \

+ motor k p ∗ pos + motor k d ∗ speed

conver t −100 ˜ 100 to −1050 ˜ 1050
speed = (((pd − (−100)) ∗ (1049 − (−1049))) / (100 − (−100))) + (−1049)
l motor . r u n f o r e v e r (speed sp=speed)
r motor . r u n f o r e v e r (speed sp=speed)

lo g g i n g . debug(”%d;%d;%d” , angle , rate , pd)

i f abs (pd) > 1050:
pr i n t (” cap ”)

speed = min(max(pd , −1050) , 1050)

l motor . stop (s t o p a c t i o n=” hold ”)
r motor . stop (s t o p a c t i o n=” hold ”)

Combine the arrays
try :

ba lance ()
except :

l motor . stop (s t o p a c t i o n=” hold ”)
r motor . stop (s t o p a c t i o n=” hold ”)

f ina l ly :
data = zip (l o g t , log ang , log vang , log x , l o g v)

Define the f i l ename
now = datet ime . now () # current date and time
LOGNAME = os . path . j o i n (now . s t r f t i m e (”%m−%d %H:%M:%S”) + ”new . csv ”)

18

Write data to CSV f i l e
with open(LOGNAME, ’w ’ , newl ine=’ ’) as c s v f i l e :

c s v w r i t e r = csv . w r i t e r (c s v f i l e)
c s v w r i t e r . writerow ([’Time ’ , ’ Angle ’ , ’ Angular Ve loc i ty ’ , ’X pos ’ , ’ Speed ’])

Write header row
c s v w r i t e r . wr i terows (data)

19

	Theory
	Model
	Lagrangian
	Horizontal acceleration
	Angular acceleration
	Simulation

	Setup
	Control
	Validation
	Limiting the simulated system

	Conclusion
	Recommendations
	Ethics of Artificial Intelligence
	Simulation source code
	sim.py
	pendulum.py
	uiHelpers.py

	Control source code

