EV5_HW_Ontwikkeling/Core/Src/main.c

705 lines
18 KiB
C
Raw Permalink Normal View History

2024-01-23 14:43:02 +01:00
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
2024-01-31 20:07:33 +01:00
#include "stdbool.h"
2024-01-23 14:43:02 +01:00
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
2024-01-31 20:07:33 +01:00
ADC_HandleTypeDef hadc1;
TIM_HandleTypeDef htim1;
2024-01-23 14:43:02 +01:00
TIM_HandleTypeDef htim4;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM4_Init(void);
2024-01-31 20:07:33 +01:00
static void MX_ADC1_Init(void);
static void MX_TIM1_Init(void);
2024-01-23 14:43:02 +01:00
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
// HD44780_Init(16, 2);
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM4_Init();
2024-01-31 20:07:33 +01:00
MX_ADC1_Init();
MX_TIM1_Init();
2024-01-23 14:43:02 +01:00
/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim4);
HAL_TIM_Base_Start_IT(&htim1);
2024-01-23 14:43:02 +01:00
HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_3);
// /* Write string to LCD */
// HD44780_Puts(0, 0, "LCD Test");
// HD44780_Puts(0, 1, "Test line 2!");
LCD_init();
KEYS_init();
2024-01-31 20:07:33 +01:00
uint32_t adc = 0;
uint16_t t = htim1.Instance->CNT;
uint16_t dt = 0;
uint16_t pt = 0;
2024-01-31 20:07:33 +01:00
const float Kp = 12.5;
const float Ki = 15;
float error = 0.0;
float integral = 0.0;
bool automode = false;
2024-01-31 20:07:33 +01:00
char change = 0;
char page = 2;
bool convert = true;
float uTarget = 5.0;
float pi = 0.0;
uint16_t ccr = 0;
#define r1 14820
#define r2 9940
const float ratio = (float)(r1 + r2) / (float)r2;
2024-01-23 14:43:02 +01:00
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
// Read keys
unsigned int result = KEYS_read();
unsigned int pwmCnt = htim4.Instance->CCR1;
unsigned int clkCnt = htim4.Instance->ARR + 1;
unsigned int freq = 84000000 / clkCnt;
float dc = ((float)pwmCnt / (float)clkCnt) * 100.0;
// Timer
t = htim1.Instance->CNT;
dt = t - pt;
pt = t;
2024-01-23 14:43:02 +01:00
// Read ADC
2024-01-31 20:07:33 +01:00
HAL_ADC_Start(&hadc1);
if(HAL_ADC_PollForConversion(&hadc1, 5) == HAL_OK) {
adc = HAL_ADC_GetValue(&hadc1);
}
2024-01-23 14:43:02 +01:00
// ADC to Volts
float u = ((float)(adc / 4095.0) * 3.0);
if (automode)
2024-01-31 20:07:33 +01:00
{
error = uTarget - (u * ratio);
integral += (float)(error * (float)(dt / 1000000.0));
pi = Kp * error + Ki * integral + 50;
ccr = (float)(pi / 100.0) * clkCnt;
if (ccr >= 0 && ccr <= clkCnt) {
htim4.Instance->CCR1 = ccr;
htim4.Instance->CCR3 = ccr;
2024-01-31 20:07:33 +01:00
}
}
2024-01-31 20:07:33 +01:00
// Display
char ustr[8] = {0};
switch(page){
case 0:
// PWM CCR
LCD_XY(0, 0);
LCD_puts("CCR ");
LCD_putint(pwmCnt);
// CLOCK CCR
LCD_XY(8, 0);
LCD_puts(" AR ");
LCD_putint(clkCnt);
break;
case 1:
case 2:
LCD_XY(0, 0);
if (page == 1) {
// ADC value in spot 1
LCD_puts("ADC ");
LCD_XY(4, 0);
LCD_putint(adc);
} else {
// Target voltage in spot 1
sprintf(&ustr, "Ut %.2f V", uTarget);
LCD_puts(ustr);
}
memset(&ustr, '0', 8);
// Convert with resistor divider in mind if enabled
float uC = u;
if (convert)
{
uC = u * ratio;
}
// Measured voltage in spot 2
sprintf(&ustr, "%.2f V", uC);
LCD_XY(10, 0);
LCD_puts(ustr);
break;
case 3:
sprintf(&ustr, "Out %.2f", pi);
LCD_XY(0, 0);
LCD_puts(ustr);
memset(&ustr, '0', 8);
sprintf(&ustr, "r %d", ccr);
LCD_XY(10, 0);
LCD_puts(ustr);
break;
2024-01-31 20:07:33 +01:00
}
2024-01-23 14:43:02 +01:00
// Frequency
LCD_XY(0, 1);
LCD_putint(freq / 1000);
LCD_puts("KHz");
2024-01-23 14:43:02 +01:00
// Dutycycle
LCD_XY(8, 1);
char dcstr[4] = {0};
sprintf(&dcstr, "%.1f", dc);
LCD_puts(dcstr);
2024-01-23 14:43:02 +01:00
LCD_putchar('%');
2024-01-31 20:07:33 +01:00
// Auto mode enabled
LCD_XY(15, 1);
LCD_putint(automode);
2024-01-23 14:43:02 +01:00
if (change == 0 && result != 0)
{
change = result;
2024-01-31 20:07:33 +01:00
// Set frequency
2024-01-23 14:43:02 +01:00
if (result == 1)
{
htim4.Instance->ARR = 2799;
htim4.Instance->CCR1 = (htim4.Instance->ARR + 1) / 2;
htim4.Instance->CCR3 = (htim4.Instance->ARR + 1) / 2;
LCD_clear();
}
else if (result == 5)
{
htim4.Instance->ARR = 279;
htim4.Instance->CCR1 = (htim4.Instance->ARR + 1) / 2;
htim4.Instance->CCR3 = (htim4.Instance->ARR + 1) / 2;
LCD_clear();
}
// Set dutycycle
2024-01-23 14:43:02 +01:00
else if (result == 4)
{
htim4.Instance->CCR1 = htim4.Instance->CCR1 + (clkCnt / 20);
htim4.Instance->CCR3 = htim4.Instance->CCR3 + (clkCnt / 20);
}
else if (result == 8)
{
htim4.Instance->CCR1 = htim4.Instance->CCR1 - (clkCnt / 20);
htim4.Instance->CCR3 = htim4.Instance->CCR3 - (clkCnt / 20);
}
else if (result == 11)
{
htim4.Instance->CCR1 = htim4.Instance->CCR1 + (clkCnt / 100);
htim4.Instance->CCR3 = htim4.Instance->CCR3 + (clkCnt / 100);
}
else if (result == 12)
{
htim4.Instance->CCR1 = htim4.Instance->CCR1 - (clkCnt / 100);
htim4.Instance->CCR3 = htim4.Instance->CCR3 - (clkCnt / 100);
}
// Set target voltage (step .1 V)
else if (result == 2)
{
uTarget = uTarget + 0.5;
}
else if (result == 6)
{
uTarget = uTarget - 0.5;
}
2024-01-23 14:43:02 +01:00
// Set target voltage (step .5 V)
else if (result == 3)
{
uTarget = uTarget + 0.1;
2024-01-23 14:43:02 +01:00
}
else if (result == 7)
{
uTarget = uTarget - 0.1;
}
// Convert ADC to actual voltage
2024-01-31 20:07:33 +01:00
else if (result == 13)
{
convert = !convert;
LCD_clear();
}
// Switch pages
2024-01-31 20:07:33 +01:00
else if (result == 15)
{
if (page + 1 == 4) {
page = 0;
} else {
page++;
}
2024-01-31 20:07:33 +01:00
LCD_clear();
}
// Switch off PI control
2024-01-31 20:07:33 +01:00
else if (result == 16)
2024-01-23 14:43:02 +01:00
{
2024-01-31 20:07:33 +01:00
automode = !automode;
2024-01-23 14:43:02 +01:00
}
} else {
change = 0;
}
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
2024-01-31 20:07:33 +01:00
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_11;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 1680-1;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OC_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_TIMING;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_OC_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
2024-01-23 14:43:02 +01:00
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 2799;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 1400;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, LCD_D7_Pin|LCD_D5_Pin|LCD_D4_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, LCD_RS_Pin|LCD_RW_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, Blue_Led_Pin|LCD_E_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : LCD_D7_Pin LCD_D5_Pin LCD_D4_Pin */
GPIO_InitStruct.Pin = LCD_D7_Pin|LCD_D5_Pin|LCD_D4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_D6_Pin */
GPIO_InitStruct.Pin = LCD_D6_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(LCD_D6_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_RS_Pin */
GPIO_InitStruct.Pin = LCD_RS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LCD_RS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : BOOT1_Pin */
GPIO_InitStruct.Pin = BOOT1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(BOOT1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : Blue_Led_Pin LCD_E_Pin */
GPIO_InitStruct.Pin = Blue_Led_Pin|LCD_E_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_RW_Pin */
GPIO_InitStruct.Pin = LCD_RW_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LCD_RW_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : MEMS_INT2_Pin */
GPIO_InitStruct.Pin = MEMS_INT2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(MEMS_INT2_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */