Compare commits

..

No commits in common. "eb13de982576aa8401a995cdbc0368bad5ccf20e" and "c82ca1dcc99c2bdb95e61d8f9609036246116898" have entirely different histories.

4 changed files with 27 additions and 151 deletions

View File

@ -3,9 +3,9 @@ import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import csv
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler, MaxAbsScaler
from enum import Enum
import random
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler, MaxAbsScaler
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, matthews_corrcoef
class Tree(Enum):
@ -19,8 +19,7 @@ class Tree(Enum):
PLATAAN = 7
# Open file
# file = open('dataset\\csv\\result-2023-10-14T16.13.30.csv', "r")
file = open('./out/result-2023-10-10T15.08.36.csv', "r")
file = open('dataset\\csv\\result-2023-10-14T16.13.30.csv', "r")
data = list(csv.reader(file, delimiter=","))
file.close()
@ -33,7 +32,7 @@ tags_int = []
for row in data:
tree = row.pop(0)
# photoId = row.pop(1)
row.pop(1) # TODO: Doe dit niet
id = Tree[tree.upper()]
# print("Tree name =", tree, " id =", id.value)
@ -63,26 +62,26 @@ for idx, col in enumerate(data[0]):
column = np.array(column).reshape(len(column))
# DEBUG Print resulting column
# print("NORM", header[idx + 1], "\n", column)
print("NORM", header[idx + 1], "\n", column)
# Replace original data array
data[:, idx] = column
# # Get a random number for testing
# validateId = random.randint(0, tags_len - 1)
# tag_true = []
# tag_predict = []
tag_true = []
tag_predict = []
# print(tags_len)
print(tags_len)
# for validateId in range(0, tags_len - 1):
# # Remove object from train set
# validateTag = tags_int[validateId]
# validateObj =np.array([data[validateId]])
# np.delete(tags_int, validateId)
# np.delete(data, validateTag)
for validateId in range(0, tags_len - 1):
# Remove object from train set
validateTag = tags_int[validateId]
validateObj =np.array([data[validateId]])
np.delete(tags_int, validateId)
np.delete(data, validateTag)
# tag_true.append(validateTag)
tag_true.append(validateTag)
# print(validateTag, validateObj)
@ -90,30 +89,28 @@ for idx, col in enumerate(data[0]):
print(tags_int)
print(data.dtype, type(data), tags_int.dtype, type(tags_int))
knn.train(data, cv.ml.ROW_SAMPLE, tags_int)
knn.save('./out/models/knn_nosift.pkl')
# print (data)
# print('--------------------')
# print (validateObj)
# ret, results, neighbours ,dist = knn.findNearest(validateObj, 3)
# tag_predict.append(results[0][0])
ret, results, neighbours ,dist = knn.findNearest(validateObj, 3)
tag_predict.append(results[0][0])
# print( "result: {}\n".format(results) )
# print( "neighbours: {}\n".format(neighbours) )
# print( "distance: {}\n".format(dist) )
# # Create a heatmap
# sns.heatmap(confusion_matrix(tag_true, tag_predict), annot=True)
# plt.title( "Confusion Matrix KNN" )
# plt.show()
# Create a heatmap
sns.heatmap(confusion_matrix(tag_true, tag_predict), annot=True)
plt.title( "Confusion Matrix KNN" )
plt.show()
# Score
# print("Accuracy score", accuracy_score(tag_true, tag_predict))
# print("Precision score (macro)", precision_score(tag_true, tag_predict, average='macro'))
# print("Precision score (micro)", precision_score(tag_true, tag_predict, average='micro'))
# print("Recall score (macro)", recall_score(tag_true, tag_predict, average='macro'))
# print("Recall score (micro)", recall_score(tag_true, tag_predict, average='micro'))
# print("MCC", matthews_corrcoef(tag_true, tag_predict))
print("Accuracy score", accuracy_score(tag_true, tag_predict))
print("Precision score (macro)", precision_score(tag_true, tag_predict, average='macro'))
print("Precision score (micro)", precision_score(tag_true, tag_predict, average='micro'))
print("Recall score (macro)", recall_score(tag_true, tag_predict, average='macro'))
print("Recall score (micro)", recall_score(tag_true, tag_predict, average='micro'))
print("MCC", matthews_corrcoef(tag_true, tag_predict))

View File

@ -323,7 +323,6 @@
<child>
<object class="tk.Text" id="testdata" named="True">
<property name="height">15</property>
<property name="state">disabled</property>
<property name="text" translatable="yes">No tests have been run yet</property>
<property name="undo">false</property>
<property name="width">25</property>

View File

@ -1,103 +0,0 @@
import cv2 as cv
import numpy as np
import csv
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler, MaxAbsScaler
import argparse
from enum import Enum
parser = argparse.ArgumentParser(prog='KNN Train CLI')
parser.add_argument('-i', '--input', help='Input CSV file', required=True)
parser.add_argument('-o', '--output', help='Output model file', required=True)
class Tree(Enum):
ACCASIA = 0
BERK = 1
EIK = 2
ELS = 3
ESDOORN = 4
ES = 5
LINDE = 6
PLATAAN = 7
class CVSuiteTestKNN:
def __init__(self, model = None):
if model is None:
self.knn = cv.ml.KNearest_create()
self.trained = False
else:
self.knn = cv.ml.KNearest_load(model)
self.trained = True
def trainCSV(self, path, output):
'''
Takes preprocessed data from CVSuite, normalises it and trains the model
Function expects first two columns of the dataset to be tag and photoId, the first row should be the CSV header
'''
file = open(path, mode='r')
data = list(csv.reader(file, delimiter=","))
file.close()
header = data.pop(0)
print("CSV tags: ", header)
# Get classifier tags
tags_int = []
for row in data:
tree = row.pop(0)
# photoId = row.pop(1)
id = Tree[tree.upper()]
# print("Tree name =", tree, " id =", id.value)
tags_int.append(id.value)
# Make into numpy array cus OpenCV is dumb af
tags_len = len(tags_int)
tags_int = np.array(tags_int, dtype=np.int32)
# Transform array for normalisation
data = np.array(data, dtype=np.float32)
for idx, col in enumerate(data[0]):
# Get column from data
column = data[:, idx]
# Shape it to 2 dimentional
column = np.array(column).reshape(-1, 1)
# Perform Min - Max scaling
# scaler = MinMaxScaler()
scaler = MaxAbsScaler()
column = scaler.fit_transform(column)
# Reshape it back cus scaler is dumb af
column = np.array(column).reshape(len(column))
# DEBUG Print resulting column
# print("NORM", header[idx + 1], "\n", column)
# Replace original data array
data[:, idx] = column
# Pass data to train function
self.train(data, tags_int, output)
def train(self, data, tags, output):
'''
Data should be normalised before being passed to this function
This function should not be run from within the suite
'''
if self.trained:
throw("Model already trained!")
else:
self.knn.train(data, cv.ml.ROW_SAMPLE, tags)
self.knn.save(output)
def predict(self, data):
return self.knn.predict(data)
if __name__ == "__main__":
args = parser.parse_args()
test = CVSuiteTestKNN()
test.trainCSV(args.input, args.output)

View File

@ -19,9 +19,6 @@ from helpers.logger import CVSuiteLogger, C_DBUG
from helpers.canvas import CVSuiteCanvas
from helpers.sift import getSiftData
# Tests
from helpers.test.knn import CVSuiteTestKNN
## UI config load
PROJECT_PATH = pathlib.Path(__file__).parent
PROJECT_UI = "./src/helpers/gui/main.ui"
@ -84,9 +81,6 @@ class CVSuite:
)
builder.connect_callbacks(self)
# Model tests
self.test_knn = CVSuiteTestKNN(config_json["models"]["knn"])
# Load values from config after UI has been initialised
self.img_path.set(config_json["path"])
self.img_size.set(config_json["size"])
@ -273,15 +267,6 @@ class CVSuite:
self.log.add(f"Mean {label}", mean[idx])
self.log.add(f"Std {label}", std[idx])
def runTest(self, event=None):
output = self.builder.get_object("testdata")
output.configure(state="normal")
output.delete(1.0, "end")
output.insert("end", "test\n")
output.configure(state="disabled")
def updatePath(self):
"""
Only update image name and path
@ -421,9 +406,6 @@ class CVSuite:
self.log.add("SIFT total response", siftData[5])
self.log.add("SIFT average response", siftData[6])
# Run tests
self.runTest()
# Write results to CSV file
if not part_update:
self.log.update()
@ -434,6 +416,7 @@ class CVSuite:
plt.show(block=False) ## Graphs
self.canvas.draw(size) ## Images
if __name__ == "__main__":
app = CVSuite()
app.run()