Compare commits
2 Commits
8f0a238ae8
...
311070d1a6
Author | SHA1 | Date | |
---|---|---|---|
311070d1a6 | |||
9bdd9c14f5 |
@ -1,15 +1,16 @@
|
|||||||
|
from enum import Enum
|
||||||
from sklearn import tree
|
from sklearn import tree
|
||||||
from sklearn import metrics
|
from sklearn import metrics
|
||||||
from sklearn import preprocessing
|
from sklearn import preprocessing
|
||||||
from sklearn.ensemble import RandomForestClassifier
|
import sklearn
|
||||||
# from ...helpers.treenum import Tree
|
|
||||||
from enum import Enum
|
|
||||||
import csv
|
|
||||||
import random
|
|
||||||
from matplotlib import pyplot as plt
|
from matplotlib import pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import random
|
||||||
|
import csv
|
||||||
|
|
||||||
SIFT_PATH = "..\\algorithms\\data\\sift.csv"
|
SIFT_PATH = "..\\algorithms\\data\\sift.csv"
|
||||||
|
# SIFT_PATH = "C:\\Users\\Tom\\Desktop\\Files\\Repositories\\EV5_Beeldherk_Bomen\datacsv\\result-2023-10-13T14.46.23.csv"
|
||||||
|
|
||||||
class Tree(Enum):
|
class Tree(Enum):
|
||||||
ACCASIA = 0
|
ACCASIA = 0
|
||||||
@ -24,6 +25,27 @@ class Tree(Enum):
|
|||||||
# [[tree1_data],[tree2_data]]
|
# [[tree1_data],[tree2_data]]
|
||||||
# [tree1_label, tree2_label]
|
# [tree1_label, tree2_label]
|
||||||
|
|
||||||
|
def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"):
|
||||||
|
|
||||||
|
#creating a set of all the unique classes using the actual class list
|
||||||
|
unique_class = set(actual_class)
|
||||||
|
roc_auc_dict = {}
|
||||||
|
for per_class in unique_class:
|
||||||
|
|
||||||
|
#creating a list of all the classes except the current class
|
||||||
|
other_class = [x for x in unique_class if x != per_class]
|
||||||
|
|
||||||
|
#marking the current class as 1 and all other classes as 0
|
||||||
|
new_actual_class = [0 if x in other_class else 1 for x in actual_class]
|
||||||
|
new_pred_class = [0 if x in other_class else 1 for x in pred_class]
|
||||||
|
|
||||||
|
#using the sklearn metrics method to calculate the roc_auc_score
|
||||||
|
roc_auc = metrics.roc_auc_score(new_actual_class, new_pred_class, average = average)
|
||||||
|
roc_auc_dict[per_class] = roc_auc
|
||||||
|
|
||||||
|
return roc_auc_dict
|
||||||
|
|
||||||
|
|
||||||
labels = []
|
labels = []
|
||||||
i = 0
|
i = 0
|
||||||
done = False
|
done = False
|
||||||
@ -44,17 +66,28 @@ with open(SIFT_PATH, 'r') as file:
|
|||||||
normalized = preprocessing.normalize(data, axis=0, norm='max')
|
normalized = preprocessing.normalize(data, axis=0, norm='max')
|
||||||
norm = list(normalized.tolist())
|
norm = list(normalized.tolist())
|
||||||
|
|
||||||
actual = []
|
steps = np.linspace(2, 20, 10, dtype=np.int64)
|
||||||
predicted = []
|
accuracy = []
|
||||||
for i in range(75):
|
precision = []
|
||||||
|
recall = []
|
||||||
|
roc = []
|
||||||
|
|
||||||
|
for step in steps:
|
||||||
|
actual = []
|
||||||
|
predicted = []
|
||||||
|
|
||||||
|
for i in range(100):
|
||||||
test_index = random.randint(1, 101)
|
test_index = random.randint(1, 101)
|
||||||
temp_data = data.pop(test_index)
|
temp_data = data.pop(test_index)
|
||||||
temp_label = labels.pop(test_index)
|
temp_label = labels.pop(test_index)
|
||||||
|
del dec_tree
|
||||||
|
|
||||||
# dec_tree = tree.DecisionTreeClassifier(
|
dec_tree = tree.DecisionTreeClassifier(
|
||||||
# criterion='entropy',
|
min_samples_leaf=2,
|
||||||
# splitter='best')
|
max_depth=None,
|
||||||
dec_tree = RandomForestClassifier(max_depth=None)
|
random_state=False,
|
||||||
|
criterion='gini',
|
||||||
|
splitter='best')
|
||||||
dec_tree = dec_tree.fit(data, labels)
|
dec_tree = dec_tree.fit(data, labels)
|
||||||
result = dec_tree.predict([matrix[test_index][1:]])
|
result = dec_tree.predict([matrix[test_index][1:]])
|
||||||
|
|
||||||
@ -65,9 +98,33 @@ for i in range(75):
|
|||||||
actual.append(temp_label)
|
actual.append(temp_label)
|
||||||
predicted.append(result[0])
|
predicted.append(result[0])
|
||||||
|
|
||||||
|
accuracy.append(metrics.accuracy_score(actual, predicted))
|
||||||
|
precision.append(metrics.precision_score(actual, predicted, average='macro'))
|
||||||
|
recall.append(metrics.recall_score(actual, predicted, average='macro'))
|
||||||
|
roc.append(roc_auc_score_multiclass(actual, predicted))
|
||||||
|
|
||||||
|
print(step)
|
||||||
|
|
||||||
|
# Scores
|
||||||
|
# https://www.evidentlyai.com/classification-metrics/multi-class-metrics
|
||||||
|
plt.plot(accuracy)
|
||||||
|
plt.title("Accuracy")
|
||||||
|
plt.show()
|
||||||
|
plt.plot(precision)
|
||||||
|
plt.title("Precision")
|
||||||
|
plt.show()
|
||||||
|
plt.plot(recall)
|
||||||
|
plt.title("Recall")
|
||||||
|
plt.show()
|
||||||
|
df = pd.DataFrame(roc)
|
||||||
|
plt.figure()
|
||||||
|
for i in range(7):
|
||||||
|
plt.plot(df[i], label=Tree(i).name)
|
||||||
|
plt.legend()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# Confusion matrix
|
||||||
c_matrix = metrics.confusion_matrix(actual, predicted)
|
c_matrix = metrics.confusion_matrix(actual, predicted)
|
||||||
cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix=c_matrix)
|
cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix=c_matrix)
|
||||||
cm_display.plot()
|
cm_display.plot()
|
||||||
plt.show(block=False)
|
plt.show(block=False)
|
||||||
# print("Testdata: \t" + Tree[matrix[test_index][0].upper()].name)
|
|
||||||
# print("Predicted: \t" + Tree(result[0]).name)
|
|
Loading…
Reference in New Issue
Block a user