Compare commits
No commits in common. "6a2958a68b1f90c8ca974179022c58c4d3696dd1" and "89001d47a0a0d15ea068e1b0fdaffcc329599a61" have entirely different histories.
6a2958a68b
...
89001d47a0
@ -1,37 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import math
|
|
||||||
|
|
||||||
mean = 125
|
|
||||||
sd = 20
|
|
||||||
N = 255
|
|
||||||
f = np.zeros(N, dtype=np.longdouble)
|
|
||||||
|
|
||||||
def calcNormalFunc(mean, sd, len):
|
|
||||||
f = np.zeros(len, dtype=np.longdouble)
|
|
||||||
|
|
||||||
# calculate PDF
|
|
||||||
for x in range(len):
|
|
||||||
exp = (-(x - mean) ** 2)/(2 * sd ** 2)
|
|
||||||
f[x] = 1 / math.sqrt(2 * np.pi * sd** 20 ) * (math.exp(exp))
|
|
||||||
|
|
||||||
# normalize PDF
|
|
||||||
max = np.amax(f)
|
|
||||||
min = np.amin(f)
|
|
||||||
for x in range(len):
|
|
||||||
f[x] = (f[x] - min) / (max - min)
|
|
||||||
|
|
||||||
return f
|
|
||||||
|
|
||||||
f = calcNormalFunc(mean, sd, N)
|
|
||||||
|
|
||||||
plt.title("PDF: $\mu = %d$, $\sigma = %d$"%(mean, sd))
|
|
||||||
plt.plot(f)
|
|
||||||
plt.grid()
|
|
||||||
plt.xlim(0, 255)
|
|
||||||
plt.ylim(0, 1.05)
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
print("Score at 1 sigma: %f"%f[sd+mean])
|
|
||||||
print("Score at 2 sigma: %f"%f[2*sd+mean])
|
|
||||||
print("Score at 3 sigma: %f"%f[3*sd+mean])
|
|
@ -1,5 +1,4 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import math
|
|
||||||
|
|
||||||
def imgStats(img):
|
def imgStats(img):
|
||||||
mean = np.zeros(3)
|
mean = np.zeros(3)
|
||||||
@ -8,19 +7,3 @@ def imgStats(img):
|
|||||||
mean[i] = np.mean(img[:, :, i])
|
mean[i] = np.mean(img[:, :, i])
|
||||||
std[i] = np.std(img[:, :, i])
|
std[i] = np.std(img[:, :, i])
|
||||||
return mean, std
|
return mean, std
|
||||||
|
|
||||||
def calcNormalFunc(mean, sd, len):
|
|
||||||
f = np.zeros(len, dtype=np.longdouble)
|
|
||||||
|
|
||||||
# calculate PDF
|
|
||||||
for x in range(len):
|
|
||||||
exp = (-(x - mean) ** 2)/(2 * sd ** 2)
|
|
||||||
f[x] = 1 / math.sqrt(2 * np.pi * sd** 20 ) * (math.exp(exp))
|
|
||||||
|
|
||||||
# normalize PDF
|
|
||||||
max = np.amax(f)
|
|
||||||
min = np.amin(f)
|
|
||||||
for x in range(len):
|
|
||||||
f[x] = (f[x] - min) / (max - min)
|
|
||||||
|
|
||||||
return f
|
|
Loading…
Reference in New Issue
Block a user