Compare commits
2 Commits
57906d2a44
...
8af553236e
Author | SHA1 | Date | |
---|---|---|---|
8af553236e | |||
5c5d11a312 |
@ -52,7 +52,7 @@ class CVSuiteTestKNN:
|
||||
|
||||
for row in data:
|
||||
tree = row.pop(0)
|
||||
# photoId = row.pop(1)
|
||||
photoId = row.pop(1)
|
||||
id = Tree[tree.upper()]
|
||||
|
||||
# print("Tree name =", tree, " id =", id.value)
|
||||
@ -104,14 +104,16 @@ class CVSuiteTestKNN:
|
||||
if self.trained:
|
||||
raise EnvironmentError("Model already trained!")
|
||||
else:
|
||||
print(data)
|
||||
print(data.shape)
|
||||
self.knn.train(data, cv.ml.ROW_SAMPLE, tags)
|
||||
|
||||
# Save it
|
||||
now = datetime.datetime.now()
|
||||
self.knn.save(os.path.join(output, F"model_knn_{now.strftime('%Y-%m-%dT%H.%M.%S')}.yaml"))
|
||||
|
||||
def predict(self, data):
|
||||
return self.knn.predict(data)
|
||||
def predict(self, data, nr = 3):
|
||||
return self.knn.findNearest(data, nr)
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
51
src/suite.py
51
src/suite.py
@ -14,7 +14,12 @@ import json
|
||||
# OpenCV
|
||||
import numpy as np
|
||||
import cv2
|
||||
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler, MaxAbsScaler
|
||||
from sklearn.preprocessing import (
|
||||
MinMaxScaler,
|
||||
StandardScaler,
|
||||
RobustScaler,
|
||||
MaxAbsScaler,
|
||||
)
|
||||
import joblib
|
||||
|
||||
# GUI
|
||||
@ -26,9 +31,11 @@ from helpers.statistics import imgStats
|
||||
from helpers.logger import CVSuiteLogger, C_DBUG, C_WARN
|
||||
from helpers.canvas import CVSuiteCanvas
|
||||
from helpers.sift import getSiftData
|
||||
from helpers.tags import Tree
|
||||
|
||||
# Tests
|
||||
from helpers.test.knn import CVSuiteTestKNN
|
||||
|
||||
# from helpers.test.decision_tree import CVSuiteTestDecisionTree
|
||||
|
||||
## UI config load
|
||||
@ -41,6 +48,7 @@ CONFIG_PATH = "./src/config/config.json"
|
||||
config_file = open(CONFIG_PATH, encoding="utf-8")
|
||||
config_json = json.load(config_file)
|
||||
|
||||
|
||||
## UI class setup
|
||||
class CVSuite:
|
||||
def __init__(self, master=None):
|
||||
@ -97,7 +105,6 @@ class CVSuite:
|
||||
# Attempt to load scaler
|
||||
if config_json["scaler"] != "":
|
||||
self.scaler = joblib.load(config_json["scaler"])
|
||||
print(self.scaler)
|
||||
else:
|
||||
self.scaler = None
|
||||
|
||||
@ -108,7 +115,9 @@ class CVSuite:
|
||||
self.test_knn = None
|
||||
|
||||
if config_json["models"]["dectree"] != "":
|
||||
self.test_dectree = CVSuiteTestDecisionTree(config_json["models"]["dectree"])
|
||||
self.test_dectree = CVSuiteTestDecisionTree(
|
||||
config_json["models"]["dectree"]
|
||||
)
|
||||
else:
|
||||
self.test_dectree = None
|
||||
|
||||
@ -303,26 +312,39 @@ class CVSuite:
|
||||
output.configure(state="normal")
|
||||
output.delete(1.0, "end")
|
||||
|
||||
# Normalise data
|
||||
# Remove tag and photoId
|
||||
tag = data.pop(0)
|
||||
photoId = data.pop(1)
|
||||
|
||||
for idx, value in enumerate(data):
|
||||
data[idx] = self.scaler[idx].transform(np.array(value).reshape(-1, 1))
|
||||
# Add actual name
|
||||
output.insert("end", f"Actual:\n\t{tag.upper()}\n")
|
||||
|
||||
print(data)
|
||||
# Normalise data using loaded scalers
|
||||
for idx, value in enumerate(data):
|
||||
d = np.array(value)
|
||||
data[idx] = self.scaler[idx].transform(d.astype(np.float32).reshape(1, -1))[0][0]
|
||||
|
||||
data = np.array([data], dtype=np.float32)
|
||||
|
||||
if self.test_knn is not None:
|
||||
# Do knn test
|
||||
output.insert("end", "KNN Result:\n")
|
||||
pass
|
||||
|
||||
ret, results, neighbours ,dist = self.test_knn.predict(data)
|
||||
|
||||
for idx, res_id in enumerate(neighbours[0]):
|
||||
output.insert("end", f" {idx}:\t{Tree(res_id).name}\n")
|
||||
|
||||
print(C_DBUG, "KNN Result:")
|
||||
print("\t\tresult: \t{}".format(results) )
|
||||
print("\t\tneighbours:\t{}".format(neighbours) )
|
||||
print("\t\tdistance:\t{}".format(dist) )
|
||||
else:
|
||||
print(C_WARN, "KNN Model not configured!")
|
||||
|
||||
if self.test_dectree is not None:
|
||||
print(self.test_dectree.predict(data))
|
||||
output.insert("end", "Decision Tree Result:\n")
|
||||
pass
|
||||
else:
|
||||
print(C_WARN, "Decison Tree Model not configured!")
|
||||
|
||||
@ -367,11 +389,11 @@ class CVSuite:
|
||||
print("Full update forced!")
|
||||
|
||||
if self.updatePath():
|
||||
print(C_DBUG, F"Processing {self.img_name}")
|
||||
print(C_DBUG, f"Processing {self.img_name}")
|
||||
|
||||
self.mainwindow.title(F"{TITLE} - {self.img_name}")
|
||||
self.mainwindow.title(f"{TITLE} - {self.img_name}")
|
||||
self.log.add("Tree", self.img_name.split("_")[0])
|
||||
self.log.add("ID", self.img_name.split("_")[1].split('.')[0])
|
||||
self.log.add("ID", self.img_name.split("_")[1].split(".")[0])
|
||||
|
||||
# Get all user vars
|
||||
ct1 = self.canny_thr1.get()
|
||||
@ -467,11 +489,9 @@ class CVSuite:
|
||||
self.log.add("SIFT total response", siftData[5])
|
||||
self.log.add("SIFT average response", siftData[6])
|
||||
|
||||
# Run tests
|
||||
self.runTest(self.log.data)
|
||||
|
||||
# Write results to CSV file
|
||||
if not part_update:
|
||||
self.runTest(self.log.data)
|
||||
self.log.update()
|
||||
else:
|
||||
self.log.clear() # Prevent partial updates from breaking log
|
||||
@ -480,6 +500,7 @@ class CVSuite:
|
||||
plt.show(block=False) ## Graphs
|
||||
self.canvas.draw(size) ## Images
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app = CVSuite()
|
||||
app.run()
|
||||
|
Loading…
Reference in New Issue
Block a user