Compare commits
No commits in common. "4206edd60fe696f43f6646a4e1002c2ea9a8e09b" and "642450e40c7dcb752143fa8ed6187844dcf927f2" have entirely different histories.
4206edd60f
...
642450e40c
@ -5,7 +5,6 @@ import os
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import csv
|
import csv
|
||||||
from ...helpers.treenum import Tree
|
from ...helpers.treenum import Tree
|
||||||
from enum import Enum
|
|
||||||
|
|
||||||
CSV_PATH = "src\\experiments\\algorithms\\data\\"
|
CSV_PATH = "src\\experiments\\algorithms\\data\\"
|
||||||
IMG_PATH = "dataset\\accasia_1210048 (2023_09_28 12_19_26 UTC).JPG"
|
IMG_PATH = "dataset\\accasia_1210048 (2023_09_28 12_19_26 UTC).JPG"
|
||||||
|
@ -1,53 +0,0 @@
|
|||||||
from sklearn import tree
|
|
||||||
# from ...helpers.treenum import Tree
|
|
||||||
from enum import Enum
|
|
||||||
import csv
|
|
||||||
import random
|
|
||||||
|
|
||||||
SIFT_PATH = "..\\algorithms\\data\\sift.csv"
|
|
||||||
|
|
||||||
class Tree(Enum):
|
|
||||||
ACCASIA = 0
|
|
||||||
BERK = 1
|
|
||||||
EIK = 2
|
|
||||||
ELS = 3
|
|
||||||
ESDOORN = 4
|
|
||||||
ES = 5
|
|
||||||
LINDE = 6
|
|
||||||
PLATAAN = 7
|
|
||||||
|
|
||||||
# [[tree1_data],[tree2_data]]
|
|
||||||
# [tree1_label, tree2_label]
|
|
||||||
|
|
||||||
labels = []
|
|
||||||
dialect = csv.Dialect
|
|
||||||
i = 0
|
|
||||||
done = False
|
|
||||||
test_index = random.randint(0, 102)
|
|
||||||
print(test_index)
|
|
||||||
|
|
||||||
with open(SIFT_PATH, 'r') as file:
|
|
||||||
reader = csv.reader(file, delimiter= ',')
|
|
||||||
matrix = list(reader)
|
|
||||||
data = [[] for x in range(len(matrix)-1)]
|
|
||||||
for row in matrix[1:]:
|
|
||||||
## Remove test case
|
|
||||||
if i == test_index and done == False:
|
|
||||||
done = True
|
|
||||||
data.pop(i)
|
|
||||||
continue
|
|
||||||
|
|
||||||
## append data to lists
|
|
||||||
labels.append(Tree[row[0].upper()].value)
|
|
||||||
for element in row[1:]:
|
|
||||||
data[i].append(element)
|
|
||||||
|
|
||||||
## iterator
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
clf = tree.DecisionTreeClassifier()
|
|
||||||
clf = clf.fit(data, labels)
|
|
||||||
# tree.plot_tree(clf)
|
|
||||||
print(Tree[matrix[test_index][0].upper()])
|
|
||||||
result = clf.predict([matrix[test_index][1:]])
|
|
||||||
print(Tree(result[0]).name)
|
|
Loading…
Reference in New Issue
Block a user