Compare commits
2 Commits
0738cb6a52
...
b5143c51d2
Author | SHA1 | Date | |
---|---|---|---|
b5143c51d2 | |||
ae3ee599e8 |
111
src/experiments/algorithms/data/data.csv
Normal file
111
src/experiments/algorithms/data/data.csv
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
Accasia_out
|
||||||
|
698.7577929496765,3.1334430177115538,14.639884948730469,1.828372937292583,0.019404600608275344,4.3272259356454015,223
|
||||||
|
835.5868207216263,3.2014820717303687,12.595267295837402,1.6907475606337812,0.019033726119218657,4.96780251711607,261
|
||||||
|
1322.7272791862488,3.06897280553654,31.375614166259766,1.9465412537508602,0.020197111614083055,8.704955105669796,431
|
||||||
|
616.1432831287384,2.948053986261906,10.182110786437988,1.3003369871725294,0.01828445773126121,3.8214516658335924,209
|
||||||
|
2042.4658575057983,3.370405705455113,41.08128356933594,2.6347973287004307,0.025092723959190124,15.206190719269216,606
|
||||||
|
679.9872843027115,3.2849627261000554,19.78511619567871,2.3892941334247926,0.020702168241971068,4.285348826088011,207
|
||||||
|
702.1195831298828,2.901320591445797,12.382240295410156,1.3507806557012718,0.01787308056661782,4.325285497121513,242
|
||||||
|
809.6343139410019,2.772720253222609,7.978091716766357,1.095115195842802,0.017495756149164415,5.108760795556009,292
|
||||||
|
991.9575394392014,3.4562980468264857,37.2266845703125,3.4535018683730523,0.02128367463146249,6.108414619229734,287
|
||||||
|
883.6591415405273,2.814201087708686,19.852262496948242,1.35472176718185,0.01984180409200252,6.230326484888792,314
|
||||||
|
1665.44428896904,3.284899978242682,26.174636840820312,2.252376816106766,0.024839076586435062,12.593411829322577,507
|
||||||
|
1716.247862815857,3.7391020976380327,34.431396484375,3.7368679730976226,0.027567605871488068,12.653531095013022,459
|
||||||
|
1033.3027093410492,3.093720686649848,26.645557403564453,2.403131773101099,0.022129791454149936,7.391350345686078,334
|
||||||
|
1002.2664128541946,3.318762956470843,17.658721923828125,2.2496636828812204,0.020582417291373212,6.21589002199471,302
|
||||||
|
905.6036241054535,3.1554133244092455,24.95030975341797,2.079331380141301,0.01953536727326153,5.606650407426059,287
|
||||||
|
1573.2526054382324,3.1654982000769265,22.565237045288086,1.8844591835561313,0.027768299585092117,13.800844893790781,497
|
||||||
|
1344.9189388751984,3.0705911846465717,10.925896644592285,1.3562763371500577,0.018900907925887195,8.278597671538591,438
|
||||||
|
2635.2527647018433,3.4313187040388584,21.754484176635742,2.423580701045881,0.03490584164925773,26.80768638662994,768
|
||||||
|
1274.166908979416,3.201424394420643,20.968454360961914,2.089842708717911,0.01874925658790086,7.462204121984541,398
|
||||||
|
780.677412033081,3.500795569655072,29.299978256225586,3.1758027558377497,0.017996931807743595,4.0133157931268215,223
|
||||||
|
Berk_out
|
||||||
|
2687.594747185707,3.7172818080023613,48.48632049560547,3.884212269938133,0.02503235707572181,18.098394165746868,723
|
||||||
|
2449.5360144376755,3.9129968281752006,48.72830581665039,4.190141018929445,0.026578323430598925,16.638030467554927,626
|
||||||
|
2248.9365841150284,3.6687383101387088,24.20957374572754,2.434784715027513,0.02334839300378598,14.312564911320806,613
|
||||||
|
2386.9925570487976,3.6221434856582664,24.51873779296875,2.503845528850179,0.028970138332347226,19.091321161016822,659
|
||||||
|
2558.578493118286,3.773714591619891,50.86576843261719,3.418055103617325,0.02585626285314384,17.530546214431524,678
|
||||||
|
2592.295235991478,3.635757694237697,52.358192443847656,3.2337805396374515,0.024524578845538565,17.486024716868997,713
|
||||||
|
2561.138155579567,3.2378484899868103,16.90852165222168,1.978250128109907,0.024490677895243416,19.37212621513754,791
|
||||||
|
3345.3579272031784,3.64815477339496,39.54557418823242,2.880069078600365,0.02579340783446507,23.65255498420447,917
|
||||||
|
2192.156372189522,3.4740988465761045,48.14958953857422,3.5506460162235087,0.027054107882283192,17.071142073720694,631
|
||||||
|
2484.008170723915,3.5384731776693945,37.6187629699707,2.9612951727148524,0.03286086464900407,23.068326983600855,702
|
||||||
|
1462.3458621501923,3.4735056108080578,22.076406478881836,2.3849241758099997,0.024276126959226194,10.220249449834228,421
|
||||||
|
2419.1333129405975,3.495857388642482,29.215726852416992,2.7948339211851914,0.03273452721762261,22.652292834594846,692
|
||||||
|
2687.440049767494,3.467664580345154,34.797386169433594,2.5354207818312107,0.026453086143780138,20.501141761429608,775
|
||||||
|
1468.780837059021,3.2785286541496004,19.688207626342773,1.8301759005766227,0.022607883232662322,10.12833168823272,448
|
||||||
|
Eik_out
|
||||||
|
1579.444641828537,3.6816891417914617,19.227346420288086,2.4975664779859987,0.031246154553893006,13.4046003036201,429
|
||||||
|
1612.8415837287903,3.895752617702392,19.052034378051758,2.577455127470621,0.030227775289564603,12.514298969879746,414
|
||||||
|
1352.4212625026703,3.8640607500076296,15.00854206085205,2.35411413545315,0.031208549745913063,10.922992411069572,350
|
||||||
|
1538.6859678030014,3.780555203447178,40.99676513671875,3.3523572759224476,0.029105583906027258,11.845972649753094,407
|
||||||
|
1225.0985703468323,3.3290722020294354,19.58705711364746,2.038351397338684,0.025498346643238936,9.383391564711928,368
|
||||||
|
1365.3871425390244,3.447947329644001,19.194652557373047,2.2193953246091485,0.025410288173441934,10.062474116683006,396
|
||||||
|
1097.9404437541962,2.9998372780169293,12.264142990112305,1.581511211694125,0.023072358251350823,8.444483119994402,366
|
||||||
|
1291.582367658615,3.2864691289023287,28.83696937561035,2.3913841440343515,0.022361759129560933,8.788171337917447,393
|
||||||
|
1363.1331936120987,3.549826025031507,19.18490219116211,2.6828781845914205,0.022771707088395488,8.744335521943867,384
|
||||||
|
Els_out
|
||||||
|
1359.8641113042831,3.2767809910946584,19.266313552856445,1.897638219600126,0.03115534636539867,12.929468741640449,415
|
||||||
|
1134.7650756835938,3.327756820186492,18.936323165893555,1.7635501819834738,0.03266596192182684,11.13909301534295,341
|
||||||
|
1632.902286529541,3.5040821599346375,24.11359214782715,2.5618395036682124,0.03067660743626466,14.295299065299332,466
|
||||||
|
1536.4152345657349,3.5565167466799417,27.18216896057129,2.786383289622822,0.030237345891590748,13.062533425167203,432
|
||||||
|
1107.7055238485336,3.886686048591346,22.485553741455078,2.9948413624608015,0.026233021696016455,7.476411183364689,285
|
||||||
|
1616.8189809322357,4.429641043649961,45.3355827331543,4.300393576628321,0.025648677525148815,9.361767296679318,365
|
||||||
|
1041.9242010116577,3.2764911981498672,20.875349044799805,2.3053497977427333,0.026208830522900482,8.334408106282353,318
|
||||||
|
1111.8425114154816,3.3897637543154926,34.425537109375,2.6968539571918693,0.02739228969780592,8.984671020880342,328
|
||||||
|
Esdoorn_out
|
||||||
|
1804.0408366918564,3.280074248530648,16.878116607666016,2.014352156832684,0.023109257851134647,12.710091818124056,550
|
||||||
|
1065.8392305374146,3.125628242045204,12.645761489868164,1.5616937783846487,0.023261115867152942,7.932040510699153,341
|
||||||
|
1443.1293832063675,3.164757419312209,13.824272155761719,1.6381495412391829,0.023636438981874994,10.778216175734997,456
|
||||||
|
2109.4739229679108,3.3859934558072404,22.446571350097656,1.9491651806275798,0.024649366696049755,15.356555451638997,623
|
||||||
|
566.1849731206894,3.494968969880799,14.277800559997559,2.26332032519058,0.02264520879489956,3.668523824773729,162
|
||||||
|
654.3276780843735,3.255361582509321,14.174254417419434,2.0223312092105425,0.0228689360798369,4.596656152047217,201
|
||||||
|
2245.0964748859406,3.6804860244031814,24.625778198242188,2.75325816629717,0.028883854125733258,17.619151016697288,610
|
||||||
|
2144.3980325460434,3.9060073452569095,23.537641525268555,2.982770847358778,0.0322847970131995,17.724353560246527,549
|
||||||
|
716.7942097187042,3.303199123127669,12.021895408630371,1.8694689392752937,0.022289771651033706,4.836880448274314,217
|
||||||
|
512.756842136383,3.308108658944407,12.388520240783691,1.9337408376098448,0.022146687284111975,3.4327365290373564,155
|
||||||
|
203.3936928510666,2.676232800671929,9.652430534362793,1.0712162703218076,0.01939073234404388,1.473695658147335,76
|
||||||
|
69.72195136547089,2.9050813068946204,8.56438159942627,1.3172613562659046,0.019768514127160113,0.4744443390518427,24
|
||||||
|
760.4716109037399,3.456689140471545,15.6034517288208,1.8629395593771183,0.022623810722407968,4.977238358929753,220
|
||||||
|
1182.883133649826,3.360463447868824,19.758787155151367,2.1385583241671227,0.022289208096811886,7.845801250077784,352
|
||||||
|
Es_out
|
||||||
|
321.85712587833405,2.7746303955028795,8.890114784240723,1.3376489632824087,0.01832420542707731,2.125607829540968,116
|
||||||
|
552.8187339305878,3.2328580931613318,10.130751609802246,1.8025538661742508,0.018092449095470513,3.093808795325458,171
|
||||||
|
588.2388911247253,3.0478699022006492,9.2846097946167,1.3144556549216149,0.017584343860649693,3.3937783651053905,193
|
||||||
|
394.3926087617874,3.1301000695379955,10.9545259475708,1.6391168134480771,0.017145832527487997,2.1603748984634876,126
|
||||||
|
553.2564067840576,2.8372123424823465,10.358263969421387,1.350251161044622,0.018460245196444867,3.599747813306749,195
|
||||||
|
338.75891745090485,2.7996604748008664,9.217413902282715,1.283988791527709,0.018358958323201363,2.221433957107365,121
|
||||||
|
720.4328188896179,3.0526814359729575,12.120339393615723,1.6056232318864754,0.018135199863937194,4.279907167889178,236
|
||||||
|
849.7654691934586,3.255806395377236,10.75560474395752,1.4615165188330932,0.018580378411459056,4.849478765390813,261
|
||||||
|
555.6458119153976,3.388084218996327,14.520678520202637,1.953400702594663,0.01816363431081721,2.9788360269740224,164
|
||||||
|
1692.7979286909103,3.632613580881782,20.59199333190918,2.3585647083456562,0.018669820646455615,8.700136421248317,466
|
||||||
|
749.9521169662476,3.1643549239082174,12.163043022155762,1.6879179665006827,0.01935904413335937,4.588093459606171,237
|
||||||
|
495.28962099552155,2.983672415635672,12.046462059020996,1.60246979233263,0.017850231289504522,2.9631383940577507,166
|
||||||
|
547.3506425619125,3.2008809506544593,12.70744514465332,1.6010494871239151,0.017072790629116066,2.9194471975788474,171
|
||||||
|
609.8123083114624,3.06438345885157,11.177712440490723,1.6252859374605053,0.01953577640087311,3.887619503773749,199
|
||||||
|
1049.4082342386246,3.915702366562032,40.334678649902344,4.186340109661006,0.021392696182618836,5.733242576941848,268
|
||||||
|
98.67310166358948,2.666840585502418,5.462077617645264,0.8816751949777557,0.018322708311717253,0.6779402075335383,37
|
||||||
|
Linde_out
|
||||||
|
2461.9480855464935,3.647330497105916,31.023351669311523,2.935188384240195,0.028290224722414103,19.09590168762952,675
|
||||||
|
1867.9105838537216,3.612979852715129,32.11227035522461,2.97824320863418,0.024062555778692377,12.440341337583959,517
|
||||||
|
2124.3844242095947,3.4099268446381936,25.51401710510254,2.3428222023628127,0.023997853738801436,14.950662879273295,623
|
||||||
|
1271.0833770036697,3.5210065844977003,30.341659545898438,2.694577657260915,0.022613988515928676,8.163649854250252,361
|
||||||
|
2168.191069126129,3.6379044783995456,22.332868576049805,2.5124689591930625,0.024711657454565966,14.728147842921317,596
|
||||||
|
2013.289783000946,3.653883453722225,25.39375114440918,2.890201927887927,0.024696742919714826,13.60790534876287,551
|
||||||
|
Plataan_out
|
||||||
|
393.0376785993576,6.238693311100914,54.77334213256836,8.288615256835522,0.018721998817036078,1.1794859254732728,63
|
||||||
|
121.42510282993317,3.0356275707483293,6.407865047454834,1.2202699276482052,0.018214209564030172,0.7285683825612068,40
|
||||||
|
535.1427782773972,2.9896244596502632,13.512324333190918,2.097842298338548,0.016643719497922413,2.979225790128112,179
|
||||||
|
90.34654986858368,3.1153982713304718,6.734649181365967,1.3800949819155952,0.015865142681989176,0.4600891377776861,29
|
||||||
|
437.9166510105133,2.9588962906115763,11.90050983428955,1.4047910909894616,0.01991794491186738,2.9478558469563723,148
|
||||||
|
165.1281417608261,2.580127215012908,4.76331090927124,0.7642263750567146,0.018476538331015036,1.1824984531849623,64
|
||||||
|
232.94678628444672,2.875886250425268,9.826898574829102,1.3727227350017257,0.019708929284487243,1.5964232720434666,81
|
||||||
|
332.89813327789307,3.78293333270333,22.732511520385742,3.045459303553181,0.019926275486465205,1.753512242808938,88
|
||||||
|
375.2972539663315,4.415261811368605,24.255054473876953,4.276442351754282,0.017834563169847516,1.515937869437039,85
|
||||||
|
55.11076760292053,3.061709311273363,9.913771629333496,1.935650105177096,0.017019378021359444,0.30634880438447,18
|
||||||
|
38.28573513031006,2.3928584456443787,3.611070394515991,0.5145855975780511,0.014993195189163089,0.23989112302660942,16
|
||||||
|
599.6391468048096,5.259992515831663,40.99736404418945,5.811482494116048,0.01938449298113323,2.2098321998491883,114
|
||||||
|
224.61611258983612,4.0110020105327875,38.507686614990234,6.750403253193775,0.01725217021469559,0.966121532022953,56
|
||||||
|
316.32959711551666,4.108176585915801,40.63800048828125,6.427567028038508,0.017561782018414566,1.3522572154179215,77
|
||||||
|
138.6963803768158,2.52175237048756,6.668946743011475,0.8272403842232803,0.016272347149523823,0.8949790932238102,55
|
||||||
|
241.65850698947906,3.0207313373684883,19.399702072143555,2.1353345471026124,0.017683570575900375,1.41468564607203,80
|
|
86
src/experiments/algorithms/sift_plot.py
Normal file
86
src/experiments/algorithms/sift_plot.py
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import csv
|
||||||
|
|
||||||
|
def isFloat(num):
|
||||||
|
try:
|
||||||
|
float(num)
|
||||||
|
return True
|
||||||
|
except ValueError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
DATA_PATH = "C:\\Users\\Tom\\Desktop\\Files\\Repositories\\EV5_Beeldherk_Bomen\\src\\experiments\\algorithms\\data\\data.csv"
|
||||||
|
BARK_TYPES = 8
|
||||||
|
|
||||||
|
tot_mag = [["", []] for x in range(BARK_TYPES)]
|
||||||
|
avg_mag = [["", []] for x in range(BARK_TYPES)]
|
||||||
|
max_mag = [["", []] for x in range(BARK_TYPES)]
|
||||||
|
std_mag = [["", []] for x in range(BARK_TYPES)]
|
||||||
|
avg_rep = [["", []] for x in range(BARK_TYPES)]
|
||||||
|
max_rep = [["", []] for x in range(BARK_TYPES)]
|
||||||
|
counts = [["", []] for x in range(BARK_TYPES)]
|
||||||
|
i = 0
|
||||||
|
|
||||||
|
with open(DATA_PATH, 'r') as file:
|
||||||
|
reader = csv.reader(file, delimiter=',')
|
||||||
|
for row in reader:
|
||||||
|
if isFloat(row[0]):
|
||||||
|
tot_mag[i-1][1].append(float(row[0]))
|
||||||
|
avg_mag[i-1][1].append(float(row[1]))
|
||||||
|
max_mag[i-1][1].append(float(row[2]))
|
||||||
|
std_mag[i-1][1].append(float(row[3]))
|
||||||
|
avg_rep[i-1][1].append(float(row[4]))
|
||||||
|
max_rep[i-1][1].append(float(row[5]))
|
||||||
|
counts[i-1][1].append(float(row[6]))
|
||||||
|
else:
|
||||||
|
tot_mag[i][0] = row[0]
|
||||||
|
avg_mag[i][0] = row[0]
|
||||||
|
max_mag[i][0] = row[0]
|
||||||
|
std_mag[i][0] = row[0]
|
||||||
|
avg_rep[i][0] = row[0]
|
||||||
|
max_rep[i][0] = row[0]
|
||||||
|
counts[i][0] = row[0]
|
||||||
|
i += 1
|
||||||
|
|
||||||
|
fig, axs = plt.subplots(2, 3)
|
||||||
|
|
||||||
|
for i in range(BARK_TYPES):
|
||||||
|
axs[0, 0].scatter(tot_mag[i][1], avg_mag[i][1], label=tot_mag[i][0], alpha=0.6)
|
||||||
|
axs[0, 1].scatter(tot_mag[i][1], max_mag[i][1], label=tot_mag[i][0], alpha=0.6)
|
||||||
|
axs[1, 0].scatter(tot_mag[i][1], std_mag[i][1], label=tot_mag[i][0], alpha=0.6)
|
||||||
|
axs[1, 1].scatter(tot_mag[i][1], counts[i][1], label=tot_mag[i][0], alpha=0.6)
|
||||||
|
axs[0, 2].scatter(tot_mag[i][1], avg_rep[i][1], label=tot_mag[i][0], alpha=0.6)
|
||||||
|
axs[1, 2].scatter(avg_rep[i][1], max_rep[i][1], label=tot_mag[i][0], alpha=0.6)
|
||||||
|
|
||||||
|
|
||||||
|
axs[0, 0].set_xlabel("Total")
|
||||||
|
axs[0, 0].set_ylabel("Average")
|
||||||
|
axs[0, 0].grid()
|
||||||
|
axs[0, 0].legend()
|
||||||
|
|
||||||
|
axs[0, 1].set_xlabel("Total")
|
||||||
|
axs[0, 1].set_ylabel("Maximum")
|
||||||
|
axs[0, 1].grid()
|
||||||
|
axs[0, 1].legend()
|
||||||
|
|
||||||
|
axs[1, 0].set_xlabel("Total")
|
||||||
|
axs[1, 0].set_ylabel("Standard deviation")
|
||||||
|
axs[1, 0].grid()
|
||||||
|
axs[1, 0].legend()
|
||||||
|
|
||||||
|
axs[1, 1].set_xlabel("Total")
|
||||||
|
axs[1, 1].set_ylabel("Count")
|
||||||
|
axs[1, 1].grid()
|
||||||
|
axs[1, 1].legend()
|
||||||
|
|
||||||
|
axs[0, 2].set_xlabel("Total")
|
||||||
|
axs[0, 2].set_ylabel("Average response")
|
||||||
|
axs[0, 2].grid()
|
||||||
|
axs[0, 2].legend()
|
||||||
|
|
||||||
|
axs[1, 2].set_xlabel("Average response")
|
||||||
|
axs[1, 2].set_ylabel("Max response")
|
||||||
|
axs[1, 2].grid()
|
||||||
|
axs[1, 2].legend()
|
||||||
|
|
||||||
|
plt.show()
|
@ -2,13 +2,14 @@ import numpy as np
|
|||||||
import cv2
|
import cv2
|
||||||
import os
|
import os
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import csv
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
DATASET_PATH = "C:\\Users\\tomse\\Downloads\\Dataset\\"
|
DATASET_PATH = "C:\\Users\\Tom\\Downloads\\Dataset_out\\"
|
||||||
|
CSV_PATH = "C:\\Users\\Tom\\Desktop\\Files\\Repositories\\EV5_Beeldherk_Bomen\\src\\experiments\\algorithms\\data\\"
|
||||||
DATASET_FOLDERS_LEN = len(os.listdir(DATASET_PATH))
|
DATASET_FOLDERS_LEN = len(os.listdir(DATASET_PATH))
|
||||||
EARLY_BREAK = 0
|
EARLY_BREAK = 0
|
||||||
SCALE = 1
|
SCALE = .25
|
||||||
|
|
||||||
# Plataan, Berk, Accasia
|
|
||||||
|
|
||||||
sift = cv2.SIFT.create(enable_precise_upscale=True)
|
sift = cv2.SIFT.create(enable_precise_upscale=True)
|
||||||
|
|
||||||
@ -16,6 +17,9 @@ sift = cv2.SIFT.create(enable_precise_upscale=True)
|
|||||||
max_magnitudes = [[] for x in range(DATASET_FOLDERS_LEN)]
|
max_magnitudes = [[] for x in range(DATASET_FOLDERS_LEN)]
|
||||||
avg_magnitudes = [[] for x in range(DATASET_FOLDERS_LEN)]
|
avg_magnitudes = [[] for x in range(DATASET_FOLDERS_LEN)]
|
||||||
tot_magnitudes = [[] for x in range(DATASET_FOLDERS_LEN)]
|
tot_magnitudes = [[] for x in range(DATASET_FOLDERS_LEN)]
|
||||||
|
std_magnitudes = [[] for x in range(DATASET_FOLDERS_LEN)]
|
||||||
|
max_responses = [[] for x in range(DATASET_FOLDERS_LEN)]
|
||||||
|
avg_responses = [[] for x in range(DATASET_FOLDERS_LEN)]
|
||||||
counts = [[] for x in range(DATASET_FOLDERS_LEN)]
|
counts = [[] for x in range(DATASET_FOLDERS_LEN)]
|
||||||
|
|
||||||
## Create other variables ##
|
## Create other variables ##
|
||||||
@ -50,17 +54,23 @@ for folder in os.listdir(DATASET_PATH):
|
|||||||
tot_magnitudes[i].append(np.sum(magnitudes))
|
tot_magnitudes[i].append(np.sum(magnitudes))
|
||||||
max_magnitudes[i].append(np.amax(magnitudes))
|
max_magnitudes[i].append(np.amax(magnitudes))
|
||||||
avg_magnitudes[i].append(np.sum(magnitudes)/len(kp))
|
avg_magnitudes[i].append(np.sum(magnitudes)/len(kp))
|
||||||
|
std_magnitudes[i].append(np.std(magnitudes))
|
||||||
|
|
||||||
## Number of keypoints ##
|
## Number of keypoints ##
|
||||||
counts[i].append(len(kp))
|
counts[i].append(len(kp))
|
||||||
|
|
||||||
|
## Response ##
|
||||||
|
responses = [keypoint.response for keypoint in kp]
|
||||||
|
max_responses[i].append(np.sum(responses))
|
||||||
|
avg_responses[i].append(np.mean(responses))
|
||||||
|
|
||||||
# cv2.imshow("Opencv tech", image)
|
# cv2.imshow("Opencv tech", image)
|
||||||
# cv2.waitKey(0)
|
# cv2.waitKey(0)
|
||||||
|
|
||||||
## Store labels ##
|
## Store labels ##
|
||||||
labels[i] = folder
|
labels[i] = folder
|
||||||
|
|
||||||
## Increment folder ##
|
## Increment arrays ##
|
||||||
i += 1
|
i += 1
|
||||||
|
|
||||||
if(i == EARLY_BREAK):
|
if(i == EARLY_BREAK):
|
||||||
@ -68,8 +78,36 @@ for folder in os.listdir(DATASET_PATH):
|
|||||||
|
|
||||||
print("Done!")
|
print("Done!")
|
||||||
|
|
||||||
|
## Pandas ##
|
||||||
|
with open(CSV_PATH + "data.csv" , 'w', newline='') as file:
|
||||||
|
for i in range(len(labels)):
|
||||||
|
file.write(labels[i] + '\n')
|
||||||
|
for j in range(len(tot_magnitudes[i])):
|
||||||
|
file.write(str(tot_magnitudes[i][j]) + ',')
|
||||||
|
file.write(str(avg_magnitudes[i][j]) + ',')
|
||||||
|
file.write(str(max_magnitudes[i][j]) + ',')
|
||||||
|
file.write(str(std_magnitudes[i][j]) + ',')
|
||||||
|
file.write(str(avg_responses[i][j]) + ',')
|
||||||
|
file.write(str(max_responses[i][j]) + ',')
|
||||||
|
file.write(str(counts[i][j]) + '\n')
|
||||||
|
|
||||||
|
## CSV ##
|
||||||
|
# with open(CSV_PATH + "data.csv" , 'w', newline='') as file:
|
||||||
|
# writer = csv.writer(file, delimiter=',')
|
||||||
|
|
||||||
|
# for i in range(len(tot_magnitudes)):
|
||||||
|
# writer.writerow(tot_magnitudes[i])
|
||||||
|
# writer.writerow(avg_magnitudes[i])
|
||||||
|
# writer.writerow(max_magnitudes[i])
|
||||||
|
# writer.writerow(counts[i])
|
||||||
|
# writer.writerow('')
|
||||||
|
|
||||||
|
# writer.writerows(max_magnitudes)
|
||||||
|
# writer.writerows(avg_magnitudes)
|
||||||
|
# writer.writerows(counts)
|
||||||
|
|
||||||
## Plots ##
|
## Plots ##
|
||||||
fig, ax = plt.subplots()
|
# fig, ax = plt.subplots()
|
||||||
# for i in range(DATASET_FOLDERS_LEN):
|
# for i in range(DATASET_FOLDERS_LEN):
|
||||||
# ax.scatter(tot_magnitudes[i], max_magnitudes[i],label=labels[i], alpha=0.7)
|
# ax.scatter(tot_magnitudes[i], max_magnitudes[i],label=labels[i], alpha=0.7)
|
||||||
# ax.scatter(avg_magnitudes[0], max_magnitudes[0], label=labels[0], alpha=0.7)
|
# ax.scatter(avg_magnitudes[0], max_magnitudes[0], label=labels[0], alpha=0.7)
|
||||||
@ -80,11 +118,11 @@ fig, ax = plt.subplots()
|
|||||||
# ax.grid(True)
|
# ax.grid(True)
|
||||||
# plt.show()
|
# plt.show()
|
||||||
|
|
||||||
ax.scatter(tot_magnitudes[2], max_magnitudes[2], label='Berk', alpha=0.7)
|
# ax.scatter(tot_magnitudes[2], max_magnitudes[2], label='Berk', alpha=0.7)
|
||||||
ax.scatter(tot_magnitudes[3], max_magnitudes[3], label='Els', alpha=0.7)
|
# ax.scatter(tot_magnitudes[3], max_magnitudes[3], label='Els', alpha=0.7)
|
||||||
ax.scatter(tot_magnitudes[7], max_magnitudes[7], label='Plataan', alpha=0.7)
|
# ax.scatter(tot_magnitudes[7], max_magnitudes[7], label='Plataan', alpha=0.7)
|
||||||
ax.set_xlabel("Total magnitude")
|
# ax.set_xlabel("Total magnitude")
|
||||||
ax.set_ylabel("Maximal magnitude")
|
# ax.set_ylabel("Maximal magnitude")
|
||||||
ax.legend()
|
# ax.legend()
|
||||||
ax.grid(True)
|
# ax.grid(True)
|
||||||
plt.show()
|
# plt.show()
|
@ -92,13 +92,16 @@ detector_params.adaptiveThreshWinSizeMax = 150 # Takes longer, but better chance
|
|||||||
dictionary = cv2.aruco.getPredefinedDictionary(cv2.aruco.DICT_ARUCO_ORIGINAL)
|
dictionary = cv2.aruco.getPredefinedDictionary(cv2.aruco.DICT_ARUCO_ORIGINAL)
|
||||||
detector = cv2.aruco.ArucoDetector(dictionary, detector_params)
|
detector = cv2.aruco.ArucoDetector(dictionary, detector_params)
|
||||||
|
|
||||||
|
images_converted = 0
|
||||||
|
images_skipped = 0
|
||||||
|
|
||||||
### IMAGE CONVERSIE ###
|
### IMAGE CONVERSIE ###
|
||||||
for folder in os.listdir(input_directory):
|
for folder in os.listdir(input_directory):
|
||||||
if folder.endswith('.py'):
|
if folder.endswith('.py'):
|
||||||
print("Skipping", folder)
|
print("Skipping", folder)
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if folder.endswith('.jpg'):
|
if folder.lower().endswith('.jpg'):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if SAVE:
|
if SAVE:
|
||||||
@ -147,10 +150,12 @@ for folder in os.listdir(input_directory):
|
|||||||
if ids is None:
|
if ids is None:
|
||||||
print("Skipping: ", filename)
|
print("Skipping: ", filename)
|
||||||
print("=============================================")
|
print("=============================================")
|
||||||
|
images_skipped += 1
|
||||||
continue
|
continue
|
||||||
if len(ids) != 4:
|
if len(ids) != 4:
|
||||||
print("Skipping: ", filename)
|
print("Skipping: ", filename)
|
||||||
print("=============================================")
|
print("=============================================")
|
||||||
|
images_skipped += 1
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if VERBOSE:
|
if VERBOSE:
|
||||||
@ -246,5 +251,10 @@ for folder in os.listdir(input_directory):
|
|||||||
cv2.waitKey(0)
|
cv2.waitKey(0)
|
||||||
if VERBOSE:
|
if VERBOSE:
|
||||||
print("=============================================")
|
print("=============================================")
|
||||||
|
images_converted += 1
|
||||||
|
|
||||||
|
if VERBOSE:
|
||||||
|
print("%d van de %d succesvol"
|
||||||
|
%(images_converted, (images_converted+images_skipped)))
|
||||||
|
|
||||||
cv2.destroyAllWindows()
|
cv2.destroyAllWindows()
|
Loading…
Reference in New Issue
Block a user