hsv + bgr prediction

This commit is contained in:
Tom Selier 2023-09-30 11:47:11 +02:00
parent 91baba6cc4
commit 6b57db324e

View File

@ -4,20 +4,40 @@ from cv2.mat_wrapper import Mat as Mat
import os
import numpy as np
import csv
from enum import Enum
CSV_PATH = "src\\experiments\\algorithms\\data\\"
IMG_PATH = "dataset\\accasia_1210048 (2023_09_28 12_19_26 UTC).JPG"
BARK_TYPES = 8
class Tree(Enum):
ACCASIA = 0
BERK = 1
EIK = 2
ELS = 3
ESDOORN = 4
ES = 5
LINDE = 6
PLATAAN = 7
class ColourSpace(Enum):
BGR = 0
HSV = 1
class colourTester:
def __init__(self) -> None:
pass
self.bgr_curves = [[[], [], []] for x in range(BARK_TYPES)]
self.bgr_ids = ["", "", ""]
self.hsv_curves = [[[], [], []] for x in range(BARK_TYPES)]
self.hsv_ids = ["", "", ""]
self.labels = ["" for x in range(BARK_TYPES)]
def loadImage(self) -> None:
img = cv2.imread(self.im_path, 1)
assert img is not None, \
"Failed to load an image, check path"
self.img = img
self.bgr_img = img
self.hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
return
def setImPath(self, path : str) -> None:
@ -50,17 +70,42 @@ class colourTester:
return (mean, std)
def loadCurves(self) -> None:
labels = []
ids = []
data = [[[], [], []] for x in range(BARK_TYPES)]
with open(self.csv_bgr_path, 'r') as bgr_file:
reader = csv.reader(bgr_file, delimiter=',')
# fix whatever is happening here
j = 0
i = -1
for row in reader:
j+=1
i += 1 if (j-1) % 3 == 0 else 0
self.labels[i] = row[0]
self.bgr_ids[(j-1)%3] = row[1]
for col in row[2:]:
self.bgr_curves[i][(j-1)%3].append(col)
print(data)
with open(self.csv_hsv_path, 'r') as hsv_file:
reader = csv.reader(hsv_file, delimiter=',')
j = 0
i = -1
for row in reader:
j+=1
i += 1 if (j-1) % 3 == 0 else 0
self.labels[i] = row[0]
self.hsv_ids[(j-1)%3] = row[1]
for col in row[2:]:
self.hsv_curves[i][(j-1)%3].append(col)
return
def testImage(self) -> None:
def correlate(self, mean : float, tree : Tree, space : ColourSpace) -> [float, float, float]:
results = [0, 0, 0]
if space == ColourSpace.BGR:
curve = self.bgr_curves
elif space == ColourSpace.HSV:
curve = self.hsv_curves
for i in range(3):
results[i] = float(curve[tree.value][i][int(mean[i])])
return results
def testImage(self) -> Tree:
# load an image
self.loadImage()
@ -68,16 +113,49 @@ class colourTester:
self.loadCurves()
# extract data
mean, std = self.getData(self.img)
bgr_mean, bgr_std = self.getData(self.bgr_img)
hsv_mean, hsv_std = self.getData(self.hsv_img)
# correlate with curves
# dictionary? list? with 0 - 1 scores
pass
av_results = np.zeros(BARK_TYPES)
for tree in Tree:
bgr_res = self.correlate(bgr_mean, tree, ColourSpace.BGR)
hsv_res = self.correlate(hsv_mean, tree, ColourSpace.HSV)
av_results[tree.value] = (np.mean(bgr_res)+np.mean(hsv_res) / 2)
# print(str(IMG_PATH.split('_')[0])+';'+tree.name + ';' + str(np.mean(bgr_res)) + ';' + str(np.mean(hsv_res)))
return np.argmax(av_results)
def testDataset(self, path : str) -> None:
n_t = 0
n_f = 0
tree_type_cor = np.zeros(BARK_TYPES)
tree_type_inc = np.zeros(BARK_TYPES)
res = np.zeros(BARK_TYPES)
i = -1
last_name = ""
for file in os.listdir(path):
file_path = os.path.join(path, file)
self.setImPath(file_path)
name = file_path.split('_')[0].split('\\')[1].upper()
result = Tree(self.testImage()).name
if last_name != name:
i += 1
last_name = name
if(name == result):
tree_type_cor[i] += 1
else:
tree_type_inc[i] += 1
res = tree_type_cor / (tree_type_cor + tree_type_inc) * 100
for i in range(BARK_TYPES):
print("%s: %d%% correct"%(Tree(i).name, res[i]))
return
if __name__ == "__main__":
tester = colourTester()
tester.setImPath(IMG_PATH)
tester.setCsvBgrPath(CSV_PATH + "bgr_curve.csv")
tester.setCsvHsvPath(CSV_PATH + "hsv_curve.csv")
tester.testImage()
tester.testDataset("dataset")
pass