diff --git a/README.md b/README.md index 5204b68..9966a10 100644 --- a/README.md +++ b/README.md @@ -80,7 +80,7 @@ $ python ./src/suite.py - Based on your system configuration, this might take a while 3. Run the CVSuiteTestKNN CLI tool: ```sh -$ python ./src/helpers/test/knn.py -i ./out/result-(date/time).csv -o ./out/models/model_knn.yaml +$ python ./src/helpers/test/knn.py -i ./out/result-(date/time).csv -o ./out/models/ ``` 4. Edit your `config.json` to include the newly created model diff --git a/src/helpers/test/knn.py b/src/helpers/test/knn.py index 700d436..1d0a852 100644 --- a/src/helpers/test/knn.py +++ b/src/helpers/test/knn.py @@ -5,6 +5,9 @@ from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler, Ma import argparse from enum import Enum import yaml +import joblib +import datetime +import os parser = argparse.ArgumentParser(prog='KNN Train CLI') parser.add_argument('-i', '--input', help='Input CSV file', required=True) @@ -34,6 +37,7 @@ class CVSuiteTestKNN: def trainCSV(self, path, output): ''' Takes preprocessed data from CVSuite, normalises it and trains the model + Output should be a folder path Function expects first two columns of the dataset to be tag and photoId, the first row should be the CSV header ''' file = open(path, mode='r') @@ -85,6 +89,10 @@ class CVSuiteTestKNN: # Replace original data array data[:, idx] = column + # Dump the scalers + now = datetime.datetime.now() + joblib.dump(self.scale, os.path.join(output, F"scale_{now.strftime('%Y-%m-%dT%H.%M.%S')}.pkl")) + # Pass data to train function self.train(data, tags_int, output) @@ -97,7 +105,10 @@ class CVSuiteTestKNN: raise EnvironmentError("Model already trained!") else: self.knn.train(data, cv.ml.ROW_SAMPLE, tags) - self.knn.save(output) + + # Save it + now = datetime.datetime.now() + self.knn.save(os.path.join(output, F"model_knn_{now.strftime('%Y-%m-%dT%H.%M.%S')}.yaml")) def predict(self, data): return self.knn.predict(data) diff --git a/src/suite.py b/src/suite.py index d58df78..19ae642 100644 --- a/src/suite.py +++ b/src/suite.py @@ -15,6 +15,7 @@ import json import numpy as np import cv2 from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler, MaxAbsScaler +import joblib # GUI import pygubu @@ -28,7 +29,7 @@ from helpers.sift import getSiftData # Tests from helpers.test.knn import CVSuiteTestKNN -from helpers.test.decision_tree import CVSuiteTestDecisionTree +# from helpers.test.decision_tree import CVSuiteTestDecisionTree ## UI config load PROJECT_PATH = pathlib.Path(__file__).parent @@ -93,8 +94,15 @@ class CVSuite: ) builder.connect_callbacks(self) + # Attempt to load scaler + if config_json["scaler"] != "": + self.scaler = joblib.load(config_json["scaler"]) + print(self.scaler) + else: + self.scaler = None + # Model tests - if config_json["models"]["knn"] != "": + if self.scaler is not None and config_json["models"]["knn"] != "": self.test_knn = CVSuiteTestKNN(config_json["models"]["knn"]) else: self.test_knn = None @@ -299,9 +307,10 @@ class CVSuite: tag = data.pop(0) photoId = data.pop(1) + for idx, value in enumerate(data): + data[idx] = self.scaler[idx].transform(np.array(value).reshape(-1, 1)) + print(data) - for value in data: - print(value) if self.test_knn is not None: # Do knn test