2023-09-14 14:24:12 +02:00
|
|
|
#!/usr/bin/python3
|
|
|
|
import pathlib
|
|
|
|
import pygubu
|
2023-09-22 13:45:34 +02:00
|
|
|
import glob
|
2023-09-14 14:24:12 +02:00
|
|
|
from tkinter import *
|
|
|
|
from PIL import ImageTk, Image
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
2023-09-22 13:45:34 +02:00
|
|
|
import time
|
2023-09-22 15:23:22 +02:00
|
|
|
import matplotlib.pyplot as plt
|
2023-09-23 21:02:30 +02:00
|
|
|
import json
|
2023-09-25 14:57:34 +02:00
|
|
|
from helpers.statistics import imgStats
|
2023-09-14 14:24:12 +02:00
|
|
|
|
2023-09-23 21:02:30 +02:00
|
|
|
## UI config load
|
2023-09-14 14:24:12 +02:00
|
|
|
PROJECT_PATH = pathlib.Path(__file__).parent
|
2023-09-23 18:35:51 +02:00
|
|
|
PROJECT_UI = "./src/helpers/gui/main.ui"
|
2023-09-23 21:02:30 +02:00
|
|
|
|
|
|
|
## Config file load
|
2023-09-23 18:35:51 +02:00
|
|
|
CONFIG_PATH = "./src/config/config.json"
|
2023-09-23 21:02:30 +02:00
|
|
|
config_file = open(CONFIG_PATH)
|
|
|
|
config_json = json.load(config_file)
|
2023-09-14 14:24:12 +02:00
|
|
|
|
2023-09-23 21:02:30 +02:00
|
|
|
## UI class setup
|
2023-09-14 14:24:12 +02:00
|
|
|
class MainApp:
|
|
|
|
def __init__(self, master=None):
|
|
|
|
self.builder = builder = pygubu.Builder()
|
|
|
|
builder.add_resource_path(PROJECT_PATH)
|
|
|
|
builder.add_from_file(PROJECT_UI)
|
2023-09-22 15:23:22 +02:00
|
|
|
|
2023-09-14 14:24:12 +02:00
|
|
|
# Main widget
|
|
|
|
self.mainwindow = builder.get_object("main", master)
|
|
|
|
|
2023-09-23 21:02:30 +02:00
|
|
|
# Canvas for output images
|
2023-09-14 14:24:12 +02:00
|
|
|
self.canvas = builder.get_object("output_canvas")
|
2023-09-23 21:02:30 +02:00
|
|
|
self.tk_imgs = [] # Required or python will forget
|
|
|
|
self.output = [[] for x in range(2)]
|
|
|
|
self.meta = builder.get_object("dataset")
|
|
|
|
|
|
|
|
# Keep track of images in dataset
|
2023-09-22 13:45:34 +02:00
|
|
|
self.img_current = 0
|
|
|
|
self.img_max = 0
|
2023-09-22 15:23:22 +02:00
|
|
|
|
|
|
|
# Plots
|
|
|
|
self.axs = self.createPlot(2, 2)
|
|
|
|
|
2023-09-23 21:02:30 +02:00
|
|
|
# UI Variables
|
|
|
|
self.canny_thr1 = None
|
|
|
|
self.canny_thr2 = None
|
|
|
|
self.img_path = None
|
2023-09-25 22:08:01 +02:00
|
|
|
self.contrast = None
|
2023-09-23 21:02:30 +02:00
|
|
|
self.img_size = None
|
2023-09-14 14:24:12 +02:00
|
|
|
self.sobel_select = None
|
2023-09-22 13:45:34 +02:00
|
|
|
self.export_id = None
|
2023-09-25 22:08:01 +02:00
|
|
|
self.brightness = None
|
|
|
|
builder.import_variables(self,['canny_thr1','canny_thr2','img_path','contrast','img_size','sobel_select','export_id','brightness'])
|
|
|
|
|
2023-09-14 14:24:12 +02:00
|
|
|
builder.connect_callbacks(self)
|
2023-09-23 21:02:30 +02:00
|
|
|
|
|
|
|
# Load values from config after UI has been initialised
|
|
|
|
self.img_path.set(config_json["path"])
|
|
|
|
self.img_size.set(config_json["size"])
|
|
|
|
|
|
|
|
def on_quit(self, event=None):
|
|
|
|
'''
|
|
|
|
Close PLT windows on main app quit
|
|
|
|
'''
|
|
|
|
plt.close()
|
|
|
|
self.mainwindow.quit();
|
2023-09-14 14:24:12 +02:00
|
|
|
|
|
|
|
def run(self):
|
2023-09-23 21:02:30 +02:00
|
|
|
'''
|
|
|
|
Run loop
|
|
|
|
'''
|
2023-09-14 14:24:12 +02:00
|
|
|
self.mainwindow.mainloop()
|
2023-09-22 13:45:34 +02:00
|
|
|
|
|
|
|
def img_prev(self, event=None):
|
2023-09-23 21:02:30 +02:00
|
|
|
'''
|
|
|
|
Open previous image from path
|
|
|
|
'''
|
2023-09-22 13:45:34 +02:00
|
|
|
if self.img_current == 0:
|
|
|
|
self.img_current = self.img_max - 1
|
|
|
|
else:
|
|
|
|
self.img_current = self.img_current - 1
|
|
|
|
self.update(self)
|
|
|
|
|
|
|
|
def img_next(self, event=None):
|
2023-09-23 21:02:30 +02:00
|
|
|
'''
|
|
|
|
Open next image from path
|
|
|
|
'''
|
2023-09-22 13:45:34 +02:00
|
|
|
if self.img_current == (self.img_max - 1):
|
|
|
|
self.img_current = 0
|
|
|
|
else:
|
|
|
|
self.img_current = self.img_current + 1
|
|
|
|
self.update(self)
|
|
|
|
|
|
|
|
def apply(self, event=None):
|
2023-09-23 21:02:30 +02:00
|
|
|
'''
|
|
|
|
Export current dataset
|
|
|
|
'''
|
2023-09-22 13:45:34 +02:00
|
|
|
img_arr = self.tk_imgs
|
|
|
|
img_id = self.export_id.get()
|
|
|
|
|
|
|
|
if (img_id >= 0 and img_id < len(img_arr)):
|
|
|
|
print("export")
|
|
|
|
else:
|
|
|
|
print("Nothing to export!")
|
2023-09-14 14:24:12 +02:00
|
|
|
|
2023-09-23 21:02:30 +02:00
|
|
|
def add_output(self, data, name: str):
|
|
|
|
'''
|
|
|
|
Add CV2 image to canvas output
|
|
|
|
'''
|
|
|
|
self.output[0].append(data)
|
|
|
|
self.output[1].append(name)
|
|
|
|
|
|
|
|
def draw_output(self, size):
|
|
|
|
# Check if size of canvas has updated
|
|
|
|
drawW = self.canvas.winfo_width()
|
|
|
|
|
|
|
|
# Reset drawing position
|
|
|
|
drawX = 0
|
|
|
|
drawY = 0
|
|
|
|
|
|
|
|
# Clear previously printed images
|
|
|
|
self.tk_imgs = []
|
|
|
|
|
|
|
|
self.meta.config(state=NORMAL)
|
|
|
|
self.meta.delete(1.0, END)
|
|
|
|
|
|
|
|
# Draw all output images
|
|
|
|
for idx, data in enumerate(self.output[0]):
|
|
|
|
# Create ui image
|
|
|
|
tk_img = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
|
|
|
|
tk_img = ImageTk.PhotoImage(image=Image.fromarray(tk_img))
|
|
|
|
self.tk_imgs.append(tk_img)
|
|
|
|
|
|
|
|
## Check if next item will be out of range
|
|
|
|
if (drawX + size >= drawW):
|
|
|
|
drawY += size
|
|
|
|
drawX = 0
|
|
|
|
self.canvas.configure(height=(drawY+size))
|
|
|
|
|
|
|
|
self.canvas.create_image(drawX,drawY,anchor=NW,image=self.tk_imgs[idx],tags="og")
|
|
|
|
drawX += size
|
|
|
|
|
|
|
|
# Add name to text box
|
|
|
|
self.meta.insert(END, F"{idx}: {self.output[1][idx]}\n")
|
|
|
|
|
|
|
|
# Clear output
|
|
|
|
self.output = [[] for x in range(2)]
|
|
|
|
self.meta.config(state=DISABLED)
|
|
|
|
|
|
|
|
# Draw canvas
|
|
|
|
# TODO IDK volgens mij moet je deze wel callen maar het programma doet het nog (geen vragen stellen)
|
|
|
|
# self.canvas.draw()
|
|
|
|
|
2023-09-22 15:23:22 +02:00
|
|
|
def createPlot(self, columns, rows):
|
|
|
|
fig, axs = plt.subplots(columns, rows)
|
|
|
|
return axs
|
2023-09-23 21:02:30 +02:00
|
|
|
|
2023-09-22 15:23:22 +02:00
|
|
|
def drawHist(self, image, labels, column, row):
|
|
|
|
self.axs[column, row].clear()
|
|
|
|
for i,lab in enumerate(labels):
|
|
|
|
hist = cv2.calcHist(
|
|
|
|
[image],
|
|
|
|
[i],
|
|
|
|
None,
|
|
|
|
[256],
|
|
|
|
[0, 256],
|
|
|
|
)
|
|
|
|
self.axs[column, row].plot(hist, label=lab)
|
|
|
|
self.axs[column, row].grid()
|
|
|
|
self.axs[column, row].legend()
|
2023-09-22 16:15:57 +02:00
|
|
|
|
|
|
|
def drawCannyHM(self, img, column, row):
|
|
|
|
self.axs[column, row].clear()
|
|
|
|
canny_max = 500
|
|
|
|
canny_step = 20
|
|
|
|
|
|
|
|
results = [[] for x in range((int)(canny_max / canny_step))]
|
2023-09-22 15:23:22 +02:00
|
|
|
|
2023-09-22 16:15:57 +02:00
|
|
|
for th1 in range(0, canny_max, canny_step):
|
|
|
|
for th2 in range(0, canny_max, canny_step):
|
|
|
|
# Canny Edge Detection
|
|
|
|
edges = cv2.Canny(image=img, threshold1=th1, threshold2=th2)
|
|
|
|
|
|
|
|
w_res = cv2.countNonZero(edges)
|
|
|
|
y_ind = (int)(th1 / canny_step)
|
|
|
|
x_ind = (int)(th2 / canny_step)
|
|
|
|
|
|
|
|
results[y_ind].append(w_res)
|
|
|
|
|
|
|
|
# print(f"Result at thres {th1}, {th2}; \tIndex {y_ind}, {x_ind} \t= {w_res}")
|
|
|
|
# print(results[y_ind])
|
2023-09-25 22:08:01 +02:00
|
|
|
|
|
|
|
self.axs[column, row].title.set_text(F"Mean: {np.matrix(results).mean()}")
|
2023-09-22 16:15:57 +02:00
|
|
|
self.axs[column, row].imshow(results)
|
|
|
|
self.axs[column, row].xaxis.set_major_formatter(lambda x, pos: str(x*canny_step))
|
|
|
|
self.axs[column, row].yaxis.set_major_formatter(lambda x, pos: str(x*canny_step))
|
2023-09-25 14:57:34 +02:00
|
|
|
|
|
|
|
def writeStats(self, img, labels, column, row):
|
|
|
|
mean, std = imgStats(img)
|
|
|
|
self.axs[column, row].title.set_text(
|
|
|
|
"mean: %c:%d %c:%d %c:%d \n std: %c:%d %c:%d %c:%d"
|
|
|
|
%(labels[0], mean[0], labels[1], mean[1], labels[2], mean[2],
|
2023-09-25 20:37:11 +02:00
|
|
|
labels[0], std[0], labels[1], std[1], labels[2], std[2]))
|
2023-09-22 16:15:57 +02:00
|
|
|
|
2023-09-14 14:24:12 +02:00
|
|
|
def update(self, event=None):
|
|
|
|
path = self.img_path.get()
|
|
|
|
|
|
|
|
if path != None and path != "":
|
2023-09-22 13:45:34 +02:00
|
|
|
# Get all images at current path
|
|
|
|
images = []
|
|
|
|
for file in glob.glob(path + "/*.png"):
|
|
|
|
images.append(file)
|
|
|
|
|
|
|
|
self.img_max = len(images)
|
|
|
|
|
2023-09-14 14:24:12 +02:00
|
|
|
# Get all user vars
|
|
|
|
ct1 = self.canny_thr1.get()
|
2023-09-22 16:15:57 +02:00
|
|
|
ct2 = self.canny_thr2.get()
|
2023-09-14 14:24:12 +02:00
|
|
|
sxy = self.sobel_select.get()
|
|
|
|
size = self.img_size.get()
|
2023-09-25 22:08:01 +02:00
|
|
|
contrast = self.contrast.get()
|
|
|
|
bright = self.brightness.get()
|
2023-09-14 14:24:12 +02:00
|
|
|
|
|
|
|
# Import and resize image
|
2023-09-22 13:45:34 +02:00
|
|
|
img = cv2.imread(images[self.img_current])
|
2023-09-14 14:24:12 +02:00
|
|
|
img = cv2.resize(img, (size, size), interpolation = cv2.INTER_AREA)
|
2023-09-23 21:02:30 +02:00
|
|
|
self.add_output(img, "Original")
|
2023-09-14 14:24:12 +02:00
|
|
|
|
|
|
|
# Set grayscale
|
|
|
|
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
2023-09-23 21:02:30 +02:00
|
|
|
self.add_output(img_gray, "Grayscale")
|
2023-09-14 14:24:12 +02:00
|
|
|
|
2023-09-25 22:08:01 +02:00
|
|
|
# Contrast / brightness boost
|
|
|
|
contrast_val = contrast / 100
|
|
|
|
bright_val = bright / 100
|
|
|
|
img_contrast = np.clip(contrast_val * (img_gray + bright_val), 0, 255).astype(np.uint8)
|
|
|
|
self.add_output(img_contrast, F"Contrast / Brightness\n c+{contrast_val} b+{bright_val}")
|
|
|
|
|
2023-09-14 14:24:12 +02:00
|
|
|
# Blurred edition
|
2023-09-25 22:08:01 +02:00
|
|
|
img_blur = cv2.GaussianBlur(img_gray, (3, 3), 0)
|
|
|
|
self.add_output(img_blur, "Blurred (3)")
|
2023-09-14 14:24:12 +02:00
|
|
|
|
|
|
|
# Sobel edge
|
|
|
|
if sxy in ['x', 'y', 'both']:
|
|
|
|
if sxy == 'x':
|
|
|
|
dx = 1
|
|
|
|
dy = 0
|
|
|
|
elif sxy == 'y':
|
|
|
|
dx = 0
|
|
|
|
dy = 1
|
|
|
|
elif sxy == 'both':
|
|
|
|
dx = 1
|
|
|
|
dy = 1
|
|
|
|
|
|
|
|
img_sobel = cv2.Sobel(src=img_blur, ddepth=cv2.CV_8U, dx=dx, dy=dy, ksize=5)
|
|
|
|
else:
|
2023-09-23 21:02:30 +02:00
|
|
|
img_sobel = img_gray
|
2023-09-25 22:08:01 +02:00
|
|
|
self.add_output(img_sobel, F"Sobel Edge\n nz={cv2.countNonZero(img_sobel)}")
|
2023-09-14 14:24:12 +02:00
|
|
|
|
|
|
|
# Canny edge
|
|
|
|
img_canny = cv2.Canny(image=img_blur,threshold1=ct1,threshold2=ct2)
|
2023-09-23 21:02:30 +02:00
|
|
|
self.add_output(img_canny, "Canny Edge")
|
2023-09-25 20:37:11 +02:00
|
|
|
self.writeStats(img, ('B', 'G', 'R'), 0, 0)
|
2023-09-22 15:23:22 +02:00
|
|
|
|
|
|
|
# BGR
|
2023-09-23 21:02:30 +02:00
|
|
|
self.add_output(img[:, :, 0], "BGR B")
|
|
|
|
self.add_output(img[:, :, 1], "BGR G")
|
|
|
|
self.add_output(img[:, :, 2], "BGR R")
|
|
|
|
|
2023-09-22 15:23:22 +02:00
|
|
|
if img is not None:
|
|
|
|
self.drawHist(img, ('B', 'G', 'R'), 0, 0)
|
|
|
|
|
|
|
|
# HSV
|
|
|
|
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
2023-09-23 21:02:30 +02:00
|
|
|
self.add_output(img_hsv, "HSV")
|
|
|
|
self.add_output(img_hsv[:, :, 0], "HSV H") # H
|
|
|
|
self.add_output(img_hsv[:, :, 1], "HSV S") # S
|
|
|
|
self.add_output(img_hsv[:, :, 2], "HSV V") # V
|
|
|
|
|
2023-09-22 15:23:22 +02:00
|
|
|
if img_hsv is not None:
|
|
|
|
self.drawHist(img_hsv, ('H', 'S', 'V'), 0, 1)
|
2023-09-25 14:57:34 +02:00
|
|
|
self.writeStats(img_hsv, ('H', 'S', 'V'), 0, 1)
|
2023-09-22 16:15:57 +02:00
|
|
|
|
2023-09-23 21:02:30 +02:00
|
|
|
# Canny Heatmap
|
2023-09-22 16:15:57 +02:00
|
|
|
self.drawCannyHM(img, 1, 1)
|
2023-09-14 14:24:12 +02:00
|
|
|
|
2023-09-23 21:02:30 +02:00
|
|
|
# Show all data
|
|
|
|
plt.show(block=False) ## Graphs
|
|
|
|
self.draw_output(size) ## Images
|
2023-09-14 14:24:12 +02:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
app = MainApp()
|
|
|
|
app.run()
|